
Act-Topic Patterns for Automatically Checking Dialogue Models

Hans Dybkjær and Laila Dybkjær

Prolog Development Center A/S (PDC) Natural Interactive Systems Laboratory
H. J. Holst Vej 3C-5C University of Southern Denmark

2605 Brøndby, Denmark Campusvej 55, 5230 Odense M, Denmark
dybkjaer@pdc.dk laila@nis.sdu.dk

Abstract
When dialogue models are evaluated today, this is normally done by using some evaluation method to collect data, often involving

users interacting with the system model, and then subsequently analysing the collected data. We present a tool called DialogDesigner
that enables automatic evaluation performed directly on the dialogue model and that does not require any data collection first.
DialogDesigner is a tool in support of rapid design and evaluation of dialogue models. The first version was developed in 2005 and
enabled developers to create an electronic dialogue model, get various graphical views of the model, run a Wizard-of-Oz (WOZ)
simulation session, and extract different presentations in HTML. The second version includes extensions in terms of support for
automatic dialogue model evaluation. Various aspects of dialogue model well-formedness can be automatically checked. Some of the
automatic analyses simply perform checks based on the state and transition structure of the dialogue model while the core part are
based on act-topic annotation of prompts and transitions in the dialogue model and specification of act-topic patterns. This paper
focuses on the version 2 extensions.

1. Introduction
We present a new approach to evaluating spoken

dialogue systems (SDSs) where early, electronic dialogue
models can be evaluated automatically, rather than only
via resource-demanding corpus collection with users and
subsequent evaluation involving considerable human
effort.

Dialogue model design errors should preferably be
caught early in the software development process.
Evaluation methods like Wizard-of-Oz (WOZ), walk-
throughs and guidelines support detection of design
problems. Also, tools exist that support rapid design and
evaluation of dialogue models. We have ourselves devel-
oped DialogDesigner version 1, see [Dybkjær and Dyb-
kjær 2005] and www.spokendialogue.dk/DialogDesigner,
which has been used in commercial development
processes since early spring 2005. However, this and other
tools as well as methods offer little or no support for
automatic evaluation of dialogue models.

Automatic evaluation requires some kind of formal-
isation of dialogue evaluation. We have earlier discussed
act-topic patterns as a formalised way in which to express
well-formedness of task-oriented dialogue in SDSs
[Dybkjær and Dybkjær 2004]. We are now building on
this work while extending DialogDesigner. Our aim is to
enable DialogDesigner to automatically:
1. check if the dialogue model is well-formed in

different respects, including whether it satisfies well-
formed act-topic patterns, and

2. identify certain types of interaction problems in logs
from WOZ experiments or from the implemented
system.

We concentrate on point 1 in this paper corresponding
to the extensions made in DialogDesigner version 2.

In the following Section 2 briefly presents
DialogDesigner. Section 3 explains how to create an
electronic dialogue model in DialogDesigner. Section 4
focuses on act-topic annotation, while Section 5 presents
the various automatic analyses offered by the tool and
provides illustrations of act topic patterns and their use.
Section 6 concludes the paper.

2. DialogDesigner
Harris [2005] stresses the importance of having an

electronic dialogue model because that enables us to add
and exploit various kinds of support for development and
evaluation.

DialogueDesigner version 1 was built in 2005 to
support the creation of electronic dialogue models of task-
oriented SDSs. The tool is implemented in C# and runs on
a Windows platform. The basis in DialogDesigner is the
design window where one can enter and browse a
dialogue model, including prompts, conditions, and state
transitions, cf. Figure 1. Once a dialogue model has been
entered there are various presentation possibilities. The
user may see graphical views of the dialogue model, or
run a Wizard-of-Oz (WOZ) simulation with users or –
using the same tool – make a walkthrough of the dialogue
model. The simulation or walkthrough is logged and can
be saved for later analysis and commenting. The
simulation log can also be used normatively to generate
test scripts for use in a systematic functionality test of the
implemented system. Finally, the user may extract HTML
versions of the entire dialogue and of prompt and phrase
lists. The creation of a dialogue model with Dialog-
Designer version 1 and the mentioned presentation
possibilities are thoroughly described in [Dybkjær and
Dybkjær 2005].

Version 2 of DialogDesigner includes two important
extensions:
1. It enables act-topic annotation of prompts and

transitions in the dialogue model at design time.
2. It supports various kinds of automatic analyses of the

dialogue model most of which are based on the act-
topic annotation of prompts and transitions in the
dialogue model.

3. Entering a Dialogue Model in
DialogDesigner

In the following we briefly explain the design and
prompt windows of DialogDesigner and how to enter a
dialogue model, including how to mark up acts and topics.
The explanation refers to the red numbers in Figures 1
(design window) and 2 (prompt window), To make the

references clearer we shall use D in front of numbers
referring to the design window and P in front of numbers
referring to the prompt window

The pane at D1 is for administrative information. At
D2 groups are added and named. A group consists of one
or more dialogue states which conceptually belong
together and are described by the group. New states are

added at D3. If there are certain conditions for entering a
state the condition field should be filled. A condition on
the state “hour” could e.g. be that you must have agreed
on a date before you can negotiate a particular time slot
for a meeting. At D4 the hierarchy of defined groups and
states is shown.

Figure 1. The designer window. Red numbers are used for reference in the text.

Prompts are entered at D5 via the “Edit” button which
opens a new window, cf. Figure 2. In this window new
phrases are entered at P1 and shown at P2. The “kind” is
used for grouping phrases together. At P3 the defined
kinds are shown. Each kind subsumes one or more ids.
Composition of a new prompt is initiated at P7. A prompt
is then composed by double clicking the relevant phrase at
P2. The id of the selected phrase will be shown at P4 and
the actual phrase is shown at P5. Prompts may be
composed from several phrases. Each new selected phrase
will be appended to the previous one(s) at P4 and P5. If,
instead of a phrase a kind name at P3 is selected, a
variable will be added to the prompt that may take several
values, e.g. any of the twelve month names as illustrated
in Figure 2. For each prompt phrase it is possible to
indicate a system act and one or more topics at P6.
Indication of acts and topics for each prompt is mandatory
for most of the automatic analyses to work, cf. Section 4.
A state may have several conditioned output prompts, cf.
D5 in Figure 1.

When the prompt window is closed the entered prompt
is shown at D5 in Figure 1 along with any specified
condition, act and topic(s).

For each state there will very often be several possible
transitions. These are entered at D7 and displayed at D6 in
Figure 1. Among the information that may be entered for
each transition is the act and topic(s) of the user’s input
which are a precondition for choosing this transition. The
prompt field at the bottom of the window at D7 works in
the same way as the prompt field at D5, including
indication of acts and topics. It is used to indicate e.g.
feedback given when moving from the current state to the
target state.

Formally we may view the dialogue model as a graph
where nodes are states with prompt sets, and edges are
transitions that are pairs of a user input (or exceptional
events like database failure and timeouts) and a system
prompt set (think of this as an explicit feedback point).
Both state and transition prompts are annotated with
system act-topics, while both user inputs and exceptional
events are annotated with user act-topics. The graph is
conditional in several places: Every state, every prompt,
and every transition are guarded by a condition.

Figure 2. The prompt window. Red numbers are used for reference in the text.

4. Act-Topic Annotation
As explained above, each system prompt and each user

input utterance is described in terms of a dialogue act and
one or more topics addressed. We have previously
[Dybkjær and Dybkjær 2004] proposed to annotate
transcribed dialogues with acts and topics to automatically
identify transaction success and dialogue smoothness.
Hastie et al. [2002] use annotated system utterances, but
disregard user utterances, as a basis for automatic
annotation of task-completion which is not necessarily the
same as task success. Once we neglect user utterances, the
dialogues by definition follow the dialogue model.

The approach we take in DialogDesigner builds on
ideas from [Dybkjær and Dybkjær 2004] but does not use
transcriptions or recognised dialogues as its basis. Rather
we use the dialogue model itself as point of departure. To
exploit the automatic analysis functionality in the
extended DialogDesigner each prompt and each transition
in the dialogue model must be annotated with speech acts
and topics.

Speech acts are frequently used in SDS research.
Nevertheless there is far from any agreement on a
standard set of speech acts. Some use fairly few acts while
others use many, and the set of speech acts used may vary
considerably even when the number of speech acts is more
or less the same. We believe that it is generally
acknowledged that for SDS research there is normally a
need for something more fine-grained than e.g. Searle’s
five speech acts [Searle 1969, 1979]. We also believe that

some degree of reuse of speech acts across applications
may be possible.

Speech
act

Explanation

accept Speaker A accepts an offer or a check made by
speaker B.

check Speaker A checks if the understanding of what
was just heard is correct.

clarify Speaker A asks for disambiguation.
feedback Speaker A provides feedback on what speaker

B just said.
hangup Speaker A leaves the dialogue.
inform Speaker A provides information to speaker B.
offer Speaker A offers information to speaker B.
other Speaker A makes unclear or null action.
pause No ínput was recorded.
reject Speaker A rejects an offer, information or

feedback from speaker B.
repair Speaker A corrects information, feedback or

other action from speaker B.
repeat Speaker A asks for repetition of what speaker B

said.
request Speaker A asks for information from speaker B.
select Speaker A selects a topic offered by speaker B.

Figure 3. Dialogue acts in DialogDesigner. Note that
speaker A may be the system as well as the user. The

same is the case for speaker B.

However, no standard set of speech acts exists and
hardly can exist. What is an appropriate set of speech acts
is highly dependent on the sort of analysis one wants to
perform. Therefore, we need to allow changes to the
default set of speech acts provided by DialogDesigner.
DialogDesigner version 2 comes by default with the
speech acts shown and explained in Figure 3, but may be
configured to other sets.

Topics are highly domain and task dependent.
Therefore the user of DialogDesigner has to define his
own set of topics for any dialogue model.

5. Automatic Analyses
The “Analyze” menu point (Figure 1) is an addition in

DialogDesigner version 2. When “Analyze” is selected a
new window will open that provides access to a number of
automatic analyses, cf. Figure 4.

The window in Figure 4 supports a “Health” check of
the dialogue model via the Health button, and it supports
the specification of rule patterns and subsequent analysis
of whether the dialogue model conforms to the patterns,
see Figure 5.

Figure 4. Results from an automatic analysis of whether it is possible to (1) reach each state in the dialogue model,

(2) return to each state in the dialogue model, and (3) if there are prompts and transitions with no dialogue act indicated.

5.1. Health Analysis
“Health” currently performs four kinds of analysis on

the dialogue model as described in the following.
One analysis concerns reachability. It is a check of

whether it is at all possible from the initial state to reach
any other state defined in the dialogue model. For each
state the output is either a warning that the state cannot be
reached or information about how many steps it as a
minimum takes to reach the state, cf. Figure 4.

The second analysis is a check of whether one can get
back to each state in a finite number of steps, i.e. is the
state “re-entrant”. To prevent self-transitions from making
a state re-entrant, the analysis of whether a given state is
re-entrant only looks at whether there are transitions back
to the state in question from any of the subsequent states.
The analysis either gives a warning that a state is not re-

entrant or it informs about how many steps it as a
minimum takes to get back to the state, cf. Figure 4.

Note that the two “Health” analyses just described are
not based on act-topic annotation but they do provide
information regarding the well-formedness of the analysed
dialogue model.

The third analysis checks each prompt and each transi-
tion to see if a speech act has been indicated and if it is
one of the defined acts. Whenever a prompt or a transition
without a speech act is found, the analysis issues a warn-
ing. The speech acts are those listed near the bottom of
Figure 4. The list of defined acts appears automatically.

The fourth analysis draws on a list of developer
defined topics which are written in the field at the bottom
of Figure 4. The analysis checks if topics are used that are
not in the list and gives a warning about the ones it finds.

Figure 5. Analysis results from applying the selected rules to the dialogue model.

5.2. Analysis Using Act-Topic Patterns
Figure 5 shows the same window as Figure 4 but focus

is now on act-topic patterns, also called rule patterns.
They are entered in the “Rule” field. An explanation of
what the rule does may be entered in the “Note” field. The
set of defined rules is listed in the tree structure to the left.

The “Analyse” button analyses the current rule in the
Rule field. If a rule or group of rules to the left is selected
and you subsequently click “Analyse selected”, the
analysis result will be shown in the large pane at the
bottom to the right. Figure 5 shows the results of
analysing two different rule patterns in one go, i.e. those
subsumed under testFeedback.

5.2.1. Writing Act-Topic Patterns
Rules are simply act-topics sequences written on the

following form:
RULE = NAME: CONDITION ‘?’ TURN*

 CONDITION = [‘^’] TURN*
 TURN = WHO ‘(‘ ACTTOPICS+ ‘)’ ‘;’
 WHO = ‘s’ | ‘u’ | ‘_’
 ACTTOPICS = ACT ‘{‘ TOPIC* ‘}’
 ACT = ‘_’ | ACTNAME
An example is
testFeedback.Repair:

s(feedback{}) ; ? u(repair{}) ;
The “s” (system) and “u” (user) are used to indicate

who performs which act. Feedback and repair are speech
acts. The “{}” indicates any topic(s), i.e. in the example
we don’t care which topic(s) the user and the system are
addressing. The example rule will cause the analysis to
check if user repair is possible whenever there is system
feedback.

Another example is

testHelp:
s(_{}) ; u(request{help}) ; ?
s(inform{help});

The “_” indicates any speech act. Thus the rule means
that whenever the system has performed an act and the
model allows the user to make a request for help, it must
be possible for the system to provide help.

We could make the following very similar rule instead
in which only the first speech act is the condition:

testHelp:
s(_{}) ; ? u(request{help}) ;
s(inform{help});

The meaning of this rule is that whenever the system
has performed some speech act it must be possible for the
user to ask for help and get help.

The rule matches are existential only: The analysis will
succeed for a state if just one match with the rule patterns
is found. The analysis does not check if there are several
matches for the same state. Also, the analysis is an ab-
straction in the sense that it relies on the act-topic annota-
tion without computing the condition fields of the model.
In principle the act-topic annotation must be coherent with
the conditions. However, in practice it means that al-
though the analysis shows that a path is possible, the ac-
tual runtime conditions may turn out to not allow the path.

5.2.2. Using Act-Topic Patterns
By applying the specified rule patterns and the act-

topic annotated dialogue model we can check if the
dialogue model is well-formed in various ways, i.e. if it
follows the specified rule patterns. We have specified act-
topic patterns to perform the following analyses:
• Universals: In any input state, universals such as

repetition, help, and goodbye should be included.

• Events: NothingUnderstood, Timeout, Hang-Up etc.
must be handled everywhere.

• Feedback: The user should be able to reject or repair
feedback from the system. Moreover, it may be
desirable that user inform or select acts are followed
by feedback from the system. We also check this.

• Common act sequences: There are several, e.g.:
o If the system makes an offer, it must be possible

for the user to reject the offer or to accept or
select something from the offer.

o If the user has selected an offer it must be
possible for the system to provide information.

o If the system requests information it must be
possible for the user to provide information.

• Topic reactions: Requests concerning a topic T must
be followed by a response concerning T.
We have applied the rules to two demo dialogue

models and to a dialogue model for a commercial system.
One demo was iteratively developed for testing and
experimenting with DialogDesigner version 2. It is a small
calendar application which allows students to book a time
slot in the teacher’s calendar for discussion of their
project. A second demo application concerns pizza
ordering. It was originally developed to experiment with
DialogDesigner version 1. The original dialogue model
has subsequently been annotated with acts and topics. The
dialogue model used in a commercial traffic information
system was originally designed using DialogDesigner
version 1. This dialogue model has also subsequently been
act-topic annotated.

We have used the same set of dialogue acts in all three
cases but of course the topics are very different. Rules can
easily be copied from on model to another. We did so but
only used those relevant to the respective models. For
example, the calendar application does not include any
“offer” speech acts.

The calendar application has been iteratively analysed
and the various analyses have helped pointing out weak-
nesses and omissions in the dialogue model which could
then immediately be corrected. The analyses revealed
several issues for consideration in the pizza demo. This
was expected since the model is at an early stage but it is
nevertheless helpful to get a list of problems.

The traffic information model is relatively small and
quite mature in that it has been tested and running in
production for over a year. Nevertheless the analysis
revealed a couple of empty transitions which should just
be deleted, and more important, a state where the previous
value could not be repaired, essentially meaning that a
whole roundtrip will be needed in this dialogue if a wrong
choice is taken.

6. Conclusion and Future Work
We have presented DialogDesigner which is a tool in

support of rapid design and evaluation of dialogue models.
Focus has been on the version 2 extensions in terms of
support for automatic dialogue model evaluation. Various
aspects of dialogue model well-formedness can be auto-
matically checked. Two of the presented analyses perform
checks based on the state and transition structure of the
dialogue model while all other described analyses are
based on act-topic annotation of prompts and transitions in
the dialogue model and specification of act-topic patterns.

We are planning to experiment with several additional
extensions of DialogDesigner. We describe the primary
ones below.

All rules must for the moment be forward looking, i.e.
they can only check if some speech act occur after the
condition. We are planning to also allow backward look-
ing rules. These may be convenient in a number of cases.
Suppose, e.g. that you have a system which should offer
discount only if the user orders a return ticket. Then you
may have a rule which checks if, provided you find a
system offer for discount, there has previously been a user
request or select speech act for a return ticket. Note that
this backwards analysis would mean “for act A, all paths
leading to A must contain act B”. This is in contrast with
forward looking rules that are existential statements only.

A second extension we are planning involves making
the rule notation more expressive, e.g. by introducing
regular expression operators, such as ‘*’, ‘+’, and ‘[]‘.

A third extension concerns analysis results. Given a
positive analysis result it may be desirable to be able to
view the actual sequence of prompts and transitions that
satisfied the rule pattern.

Fourthly we plan to allow analysis of whether one or
more required paths through the dialogue model exist.
You may think of such paths as reflecting smooth traver-
sals of the required main system functionalities, e.g. reser-
vation of a one-way ticket and of a return ticket.

A fifth improvement would be to make a closer
approximation to the runtime situation by improving the
condition handling. However, due to the insolubility of the
halting problem, we can never make an exact analysis.

A sixth extension relates to the log files from Wizard
of Oz sessions or from interaction with the implemented
system. Based on the act-topic annotation it is possible to
automatically identify locations in the logs where the
interaction is not smooth in the sense that e.g. repair acts
occur. This enables the developer to quickly look at the
identified locations to see if there is an interaction
problem which requires changes to the dialogue model.

Finally, to repeat our main message from earlier:
Having an electronic model is great for designing,
discussing, presenting and probing the model during
design, development, test, and evaluation. When the
model is electronic, all sorts of analyses are easily added.

References
Dybkjær, H. and Dybkjær, L.: From Acts and Topics to

Transactions and Dialogue Smoothness. Proceedings of
LREC2004, Vol. V, Lisbon, Portugal, 2004, 1691-1694.

Dybkjær, H. and Dybkjær, L.: DialogDesigner – A Tool
for Rapid System Design and Evaluation. Proceedings
of Sixth SIGdial Workshop on Discourse and Dialogue,
Lisbon, Portugal, 2005, 227-231.

Harris, R.: Voice Interaction Design. Morgan Kaufmann
Publishers, 2005.

Hastie, H. W., Prasad, R. and Walker, M.: Automatic
evaluation: Using a DATE Dialogue Act Tagger for
User Satisfaction and Task Completion Prediction.
Proceedings of LREC2002, 641-648.

Searle, J. R.: Speech Acts. An Essay in the Philosophy of
Language. Cambridge University Press, 1969.

Searle, J. R.: Expression and Meaning. Studies in the
Theory of Speech Acts. New York, Cambridge
University Press, 1979.

