
DialogDesigner – A Tool for Rapid System Design and Evaluation

Hans Dybkjær
Prolog Development Center A/S

H. J. Holst Vej 3C-5C
2605 Brøndby, Denmark

dybkjaer@pdc.dk

Laila Dybkjær
Natural Interactive Systems Laboratory

University of Southern Denmark
Campusvej 55, 5230 Odense M

laila@nis.sdu.dk

Abstract

As spoken dialogue systems mature, the need
for rapid development tools increases. We de-
scribe such a tool that is currently being used
for commercial design, specification and
evaluation, and that is in the process of being
developed into a complete case tool.

1 Introduction

Improved recognition and understanding of spoken in-
teraction facilitate the development of higher level tools
that may enhance the clarity of spoken dialogue systems
(SDSs) and reduce their development time and cost.
This paper describes a tool – named DialogDesigner1 –
which supports SDS developers in rapidly designing
and evaluating a dialogue model. In the following Sec-
tion 2 provides an overall description of Dialog-
Designer. Sections 3, 4, 5 and 6 present different aspects
of the tool functionality in terms of how to model the
dialogue, get various graphical views, run a Wizard-of-
Oz (WOZ) simulation session, and extract different
presentations in HTML. Sections 7 and 8 describe re-
lated work on design and evaluation tools and develop-
ment tools, respectively. Section 9 concludes the paper.

2 DialogDesigner

The basis in DialogDesigner is the design window
where one can enter and browse a dialogue model, in-
cluding prompts, conditions, and state transitions. Hav-
ing entered a dialogue model there are various presen-
tation possibilities.

One option is to view a graphical presentation of the
dialogue model. This presentation can be made more or
less detailed depending on what the designer wants to

1 See also www.spokendialogue.dk/DialogDesigner.

see. A second option is to run a WOZ simulation. This
can be done with users or as part of presentations to and
discussions with customers. The simulation is logged
and can be saved for later analysis and commenting.
The simulation log can also be used normatively to gen-
erate test scripts for use in a systematic functionality
test. A third option is to extract HTML versions of the
entire dialogue as well as of prompt and phrase lists.

In the following we explain the design window and
the three mentioned main options, and illustrate the tool
via the early design of a pizza application.

3 Dialogue Structure and Prompts

The design window (Figure 1) has at its top three fields
for administrative purposes (name of application, ver-
sion and note) (1). The rest of the window concerns
application design. The designer starts by entering a
new group (2). A group consists of one or more dia-
logue states which conceptually belong together and are
described by the group. A group or a state can be moved
up or down in the emerging dialogue structure (3) using
the arrow buttons (2). New states are entered at (4).
Here one can also indicate if there is any priority condi-
tion (conditions are numbers, not Booleans) for entering
the state, grammars needed for this state, and parameters
that can be tested in conditions on states or transitions.
No grammars are needed if the state does not take input
from the user but continues directly to another state.

A state usually has one or more prompts attached.
These are entered by clicking “edit” at (5). This leads to
a window (not shown) listing all phrases already en-
tered. New phrases can be added and one can compose a
prompt for the state by selecting one or more phrases or
named sets of indexed phrases and storing them. The
resulting text is then shown at (5) when one returns to
the design window.

To get from one state to another, transitions (6) are
needed. Some transitions are globally enabled when
input from the user is expected. These may include e.g.
request for repetition and no input registered. When

there are several such global transitions it may pay off
to group them together as done in Figure 1 under the
group StandardReactions. Here (Commands) contain
user-initiated meta-communication commands, such as
help and repeat, while (Events) contain system triggers
for meta-communication, such as no input and nothing
understood. (Standard) contains default domain value
reactions such as price information which the user may
request at any time during the dialogue. A state may
have several possible transitions leading to different
new states (targets) where the choice of transition de-
pends on the user’s immediate input or on which infor-

mation has been achieved so far. Transitions may target
states or groups of states. In the latter case state condi-
tions will determine which state to enter. Conditions on
transitions express what must be fulfilled in order to
select them. Transitions may also be accompanied by a
prompt e.g. to provide feedback on the user’s input or
bridging to the output for the next state.

Transition information is entered at (7) where click-
ing on clone will enable the designer to enter a new
transition. Transition prompt texts are entered in the
same way as state prompt texts, as explained above.

Figure 1. The design window. Red numbers are referenced in the text.

4 Graphical View

Clicking Model in the top menu bar in the design win-
dow (Figure 1) opens a new window which allows the
designer to see various graphical views of the dialogue
(Figure 2). The graph part (7) is empty when the de-
signer opens the window. To the left (1) are the groups
and states specified in the design window. To the right
(4) the designer can choose what he wants the graph to
show. This should be done before he starts drawing the
graph. Ticking Domain will enable all domain, i.e. task-
related, transitions to be drawn. Ticking Command and
System, respectively, will enable meta-transitions to be

shown where System covers meta-transitions triggered
by system events and Command covers user-initiated
meta-transitions. Incoming and Outgoing allow the de-
signer to see incoming and outgoing transitions, respec-
tively, for a group or a state. Local shows transitions
going out of and coming into the same state. Via shows
transitions to a state that by default continues to some
other state. Whenever the designer ticks one of the op-
tions Via, Incoming, Outgoing and Local, and selects a
group or a state, the Outgoing (5) and Incoming (6) lists
will show the transitions that will be drawn, if any.

To draw a group or a state in the graph part of the
window (7) one must double-click the group or state at
(1). Groups are shown in a double ellipsis to indicate

that they can be further expanded, while states are
drawn in a single ellipsis. The ellipsis of a selected
group or state is shown in red. To expand a selected
group or a state and see its transitions as specified at (4)
one must click the expand button at (2). To collapse a
group again one must double-click the group at (1).

Domain transition labels are green while system transi-
tions are red and command transition are yellow.

The graphical view is well-suited to get an overview
of the dialogue structure and see connections at a more
or less fine-grained level.

Figure 2. The graphical view. Red numbers are referenced in the text.

5 Wizard of Oz

In the design window (Figure 1) one may select “Wiz-
ard of Oz” -> “Woz” from the menu bar. Doing this
opens a new window as shown in Figure 3. This win-
dow enables the designer to simulate a user-system in-
teraction using the designed dialogue model.

The designer starts a dialogue by clicking Start (1,
where the button now is labelled Stop because a dia-
logue is ongoing). This will cause the system utterance
for the initial state to be displayed in the Prompt field
(2). At the same time all possible transitions from this
state are shown in the Next field (4). Which one to
choose depends on the user’s input which is entered at
(3). Entering the user’s input does not automatically
cause a selection of a transition. This must be done
manually. But writing down the user’s input means that
the log eventually will contain a full dialogue with both
system and user utterances. Such dialogues may later be
used for testing the application and for further analysis.
At (3) it is also possible to write notes to the current
dialogue state, user input or transition.

The designer selects a transition by double-clicking
on it. In doing this the previous system and user turn
will be displayed in the log field at (5). At the same time
the next system prompt is shown in the Prompt field and
the new transition possibilities are shown in the Next
field. The designer may copy and save a log for later
inspection in the analysis window.

The analysis window is opened from the design win-
dows menu bar “Wizard of Oz” -> “Edit logs”. This
window looks quite similar to the Woz window but sup-
ports the designer in inspecting, editing and comment-
ing a previously saved log from a simulated interaction.

6 HTML Presentations

The HTML menu in the design window (Figure 1) gives
access to a number of options for HTML presentations.

Phrase and prompt lists and a presentation of the
dialogue model may be extracted in HTML. These are
helpful for communicating with customers and phrase
speakers. The HTML dialogue model can be used for
navigating the dialogue via links, cf. Figure 4, without
having access to the DialogDesigner.

Figure 3. The simulation window. The log is stored in XML and may later be analysed in a similar window, or

the RTF-format in the right-most pane may be copied to another document. Red numbers are referenced in the text.

Figure 4. Excerpt of HTML presentation.

7 Related Design and Evaluation Tools

Other tools than DialogDesigner exist which are meant
to support the design and evaluation of SDSs and which
support WOZ. Two such tools are Suede [Klemmer et
al. 2000], developed at the University of Washington,
and the WOZ tool developed by Richard Breuer [WOZ
tool] as a by-product of his work at Scansoft.

Suede offers an interface for each of the three main
activities of design, test, and analysis. The design inter-

face allows the designer to create example dialogue
scripts and a design graph representing the general de-
sign solution. For each prompt the audio output may be
played if it has been recorded. The test mode enables
WOZ simulation. The designer selects a prompt from a
list of available prompts given the present state. The
selected prompt is played to the user. Based on the
user’s answer the designer selects again one among the
now available prompts, etc. Simulation of recognition
errors is supported. The analysis interface is similar to
the design interface except for the top of the window
which contains user audio input from the last session.
Moreover the design graph is annotated with test data
which can be played.

The WOZ tool developed by Richard Breuer offers
interfaces for the three main activities of design, WOZ
simulation and export. In the design mode the designer
can specify the dialogue design in terms of prompts,
questions and concepts. Like in DialogDesigner but
contrary to Suede this interface is textual and not
graphical. However, one has - like in DialogDesigner -
the option to view a graphical version of the designed
dialogue model. In WOZ mode the designer chooses the
output to the user from a list of possible next prompts or
questions depending on the user’s input. The export
activity is facilitated from a menu point in the design
window. There are several export possibilities, includ-
ing export to XML, HTML or HDDL (a proprietary
programming language used by the SpeechMania plat-
form [Aust et al. 1995]).

Figure 5 gives a rough comparison of which features
are included in DialogueDesigner, Suede and Woz tool.

8 Related Development Tools

IVR tools extended with recognition facilities, such as
HotVoice from Dolphin and Edify, may also be seen as
related work. Both these examples offer a graphical
interface for dialogue flow design. In addition HotVoice
also offers the possibility to edit the program text gener-
ated via the graphical interface or write the design di-
rectly in the HotVoice language. The language used by
HotVoice as well as the one used by Edify are proprie-
tary languages just like HDDL. A major difference be-
tween DialogDesigner and the IVR tools is that the
possibilities for designing a dialogue using an IVR tool
are fairly low-level. IVR tools are fine for specifying
dialogues as a flow diagram. However, it would be dif-
ficult to use them for the design of complex dialogues.

Spoken dialogue platforms such as SpeechMania,
Envox 6 VoiceXML Studio (both also support IVR),
OpenSpeech, and the CSLU Toolkit are more aimed at
implementation. To different extents they offer tools
like “standard dialogues” for “best practices” in user
interface design, such as entering a pin code.

However, common to these tools is that they focus
on the implementation rather than on the modelling and
evaluation – they are not case tools. And they do not
focus on presentation to customers and users.

9 Conclusion and Future Work

We have described DialogDesigner which is a tool in
support of SDS dialogue design and evaluation. It fo-
cuses on communication and modelling flexibility as ar-
gued in [Dybkjær and Dybkjær 2004]. The HTML ex-
tracts, graph views and simulation mode provide strong
support for communication with customers and domain
experts which is important in real-life projects. The abil-
ity to place conditions on states, transitions and prompts
provides a useful flexibility in dialogue modelling.

Three next tool development and extension steps are
planned. They include features for enhanced design
process support (cf. Figure 5) as well as implementation
support (code generation), transcription, and synthesis.
Code generation will allow the automatic generation of
VoiceXML code based on the design description pre-
sented above. Automatic code generation has the poten-
tial to save considerable effort. However, it will be a
challenge to flexibly support e.g. agent or problem solv-
ing approaches. For transcription we envision a tool
comparable to the TranscriptionStation included in the
SpeechMania platform. It requires that spoken input is
recorded and that the recognised utterances are used as
the basis for the transcription process. The synthesis
extension must allow the user of DialogDesigner to ei-
ther record output phrases for use in system simulations
or use speech synthesis for the same purpose.

Feature D
ia

lo
gD

es
ig

ne
r

Su
ed

e

B
re

ue
r

H
ot

V
oi

ce

Sp
ee

ch
M

an
ia

graph view + + + + -
graph design * + - + -
structured prompts + - - (+)2 +
record prompts - - (+)4 - +
play prompts * + + + -
speech recognition - - (+)4 (+)3 (+)3
log analysis + + - - -
regression test * -? (+)4 +
debug - - (+)4 + +
WOZ + + + - -
make test scripts + (+) 5 - - -
phrase list + - (+)4 - +
prompt list + - - - -
code generation * - + + +
standard dialogues - - - (+) +
state conditions + - - - +

Figure 5. Tool comparison. +: Has feature. -: Does
not have feature. ?: Unknown, *: In pipeline

References
Harald Aust, Martin Oerder, F. Seide and V. Stenbiss: The

Philips automatic train timetable information system.
Speech Communication 17, 1995, 249-262.

CSLU Toolkit: http://cslu.cse.ogi.edu/toolkit/

Hans Dybkjær and Laila Dybkjær: Modeling Complex Spoken
Dialog. IEEE Computer, August 2004, 32-40.

Edify: http://www.edify.com/

Envox: www.envox.com

HotVoice: www.dolphin.no

OpenSpeech: http://scansoft.com/products/

Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A.
Landay, Nadeem Aboobaker, and Annie Wang: SUEDE: A
Wizard of Oz Prototyping Tool for Speech User Interfaces.
CHI Letters, The 13th Annual ACM Symposium on User
Interface Software and Technology: UIST 2000. 2(2): 1-10.

WOZ tool: http://www.softdoc.de/body/home.htm

2 Must be coded.
3 Has recognition as part of the running system but recognition cannot
be tested during simulation.
4 By using SpeechMania tools on generated code.
S Sound must be transcribed.

