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Abstract 
The proliferation of spoken dialogue systems (SDSs) for new tasks and languages is currently bringing 
the complex issues of SDS usability to the attention of a much larger group of researchers, developers, 
marketing people, etc. than was the case 5-10 years ago. Moreover, spoken dialogue systems (SDSs) 
technologies today face an expansion of unprecedented proportions as regards the types of systems 
which may be developed. The task-oriented SDS application paradigm of the 1990s can now be 
viewed as the limiting case of a much larger space of different types of SDS, all of which form the 
topic of active research and most of which pose new usability design challenges. In this paper, we first 
describe the task-oriented SDS paradigm and show how to generate from the paradigm a much more 
comprehensive SDS typology. The following, main parts of the paper, present in detail three different 
approaches to making SDSs usable, i.e., a “baseline” approach developed for task-oriented SDSs, an 
approach towards selecting speech as an input or output modality (only) when speech is appropriate 
for the application, and an approach to building shared-goal SDSs which are optimised in terms of 
their spoken dialogue cooperativity with users. 

1 Introduction 
From a general HCI (Human-Computer Interaction) point of view, spoken dialogue systems (SDSs) 
are a kind of speech-based interfaces. Clearly, speech may be used for interface purposes other than 
spoken dialogue, such as for output-only, as in text-to-speech systems, spoken alarms, spoken 
directions, and the like, or for input-only, as in systems in which spoken input commands are used to 
control various kinds of graphical output, such as graphical menus, text time-tables, or other speech-
generated search results. However, if the interface is both interactive and really is speech-based, then 
spoken dialogue is a key component in user-system interaction. Even then, spoken dialogue does not 
have to be the only component. Speech input/output can often be usefully combined with other 
interactive modalities, producing what might be termed multimodal spoken dialogue interfaces. 
The bulk of the present paper presents three approaches to making SDSs usable. The paper does not 
aim to provide a complete overview of the complex field of SDS usability. We believe that the issue of 
SDS usability today is a target moving as fast as ever, due to the rapid expansion of the field. Rather, 
the paper reviews some potentially useful results to SDS usability based on work by the authors and 
colleagues, and looks at some of the challenges ahead. In this context, an approach means a way of 
supporting the building of usable SDSs, a way which is systematic and either based on theory or on 
substantial empirical research. In HCI, classical task analysis is a well-known example of an approach 
in this sense. Task analysis for SDS development will not be discussed below even though task 
analysis is essential to the development of usable SDSs and, arguably, its focused application to SDSs 
development does not seem to have been described in depth in the literature at this point. 
Before presenting three approaches to SDS usability, we provide some brief state of the art 
background in order to establish a frame of reference for discussing the rapidly growing number of 
usability issues facing SDS developers. Some still believe that speech-based interfaces are mainly used 
for simple command-and-control applications and that the term ‘SDS’ is merely a euphemism for 
those. It is hard to be more wrong that that. In what follows, Section 2 describes the currently 
dominant SDS application paradigm, i.e. the task-oriented SDS. Section 3 widens the perspective 
rather dramatically by describing a series of emerging, non-task-oriented aspects of SDSs for which 
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focused usability approaches are mostly lacking at this point. Section 4 presents what might perhaps 
be claimed to be a “baseline” for the usability evaluation of, primarily, task-oriented SDSs. From an 
HCI point of view, this baseline could be viewed as a synthesis of classical (but far too general for 
SDSs) HCI usability theory (or theories) and SDS-specific usability theory and know-how. Section 5 
reviews results on when (not) to use speech in human-computer interaction. In a similar way, Section 
6 reviews guidelines for how to develop cooperative spoken dialogue interfaces. Section 7 concludes 
the paper by (re-) emphasising how much we still need to learn. 

2 The emergence of the task-oriented SDS paradigm 
2.1 A brief history 
An SDS is a computer system with which users can have spoken dialogue. Thus, to be successful, an 
SDS must understand spoken input, produce contextually appropriate spoken output in return, and 
generate some significant amount of user satisfaction without which user uptake of the technology is 
likely to be seriously hampered. Simple as this may appear, from a system development point of view, 
spoken dialogue is not just spoken dialogue but a dynamic, multi-dimensional space of established 
achievements, commercial system solutions, research prototype endeavours, and remaining 
challenges. Probably, this remark has been valid since the first research prototype SDSs were 
developed in the 1980s, such as APHODEX [Haton 1988] and EVAR [Niemann et al. 1988], and 
certainly since the first commercial SDS appeared. This was in 1989 when Bell Northern Research 
deployed “Automated Alternate Billing Services” through local telephone companies in the USA. The 
system rang customers, told them they had a collect call, and asked whether they would accept the 
call. Using a very small vocabulary (yes/no and some synonyms), the system successfully completed 
about 95% of the calls that were candidates for automation [Bossemeyer and Schwab 1991]. 
In the 1990s, the kind of SDS just exemplified, i.e. the telephone-based, task-oriented SDS, became 
established as the field’s first successful application paradigm [Bernsen et al. 1998]. Today, such 
systems abound, enabling users to accomplish tasks of many different kinds and in different 
languages, such as train time-table information systems, switchboard systems, address and phone 
number information systems, banking systems, polling systems, and frequently asked questions 
systems. The drivers of these developments were research projects, such as US DARPA ATIS on air 
travel information [DARPA 1992], EU Sundial on flight and train time-table information [Peckham 
1993], the Danish Dialogue Project [Baekgaard et al. 1995] on domestic flight ticket reservation, and 
US DARPA Communicator on travel planning systems (flight and hotel reservation, car rental) 
[Walker et al. 2002]. 

2.2 What’s inside? 
Today, the task-oriented SDS, whether telephone-based or accessed through an open microphone, is 
the all-dominant paradigm among commercial SDSs and still, to a very large extent, in research as 
well. Let us briefly look at some SDS components. 
An advanced commercial spoken dialogue system includes the following main components: (1) a 
speech recogniser which converts the acoustic speech signal to an N-best list of text strings or a richer 
and more compact Word Hypothesis Graph, reflecting the recogniser’s best hypotheses about what the 
user actually said; (2) a natural language understanding module which analyses the output from the 
speech recogniser and selects the best semantic representation of the user’s input; (3) a dialogue 
manager which interprets the input in the discourse context, often looks up task-relevant information 
in one or several external information stores, typically a database, and decides on the next spoken 
output; and (5) a speech synthesiser which converts the selected output text string to spoken language 
output. In-between (3) and (5) there may be (4) a response generator which converts the dialogue 
manager’s semantic output to a surface language text string. Whilst (2) and (4) are still rather 
primitive, natural language understanding components (2), in particular, demand rapid progress. This 
is due to the fact that, increasingly, commercial SDSs are moving away from accepting command 
input-only and towards accepting spontaneous (free-form) spoken language input, liberating users 
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from having to memorise, or tediously repeat, ever-increasing numbers of input commands. Speech 
recognition (1) remains a potential weakness of SDSs, and huge efforts continue to be invested in 
improving speaker-independent speech recognition technologies. Speech synthesis technologies (5) 
continue to slowly improve, keeping up with the pace of progress in the other key SDS technologies. 
For some years, perhaps the dominant trend in dialogue managers (3) has been towards increased 
modularity in order to establish clean separation between task-dependent and task-independent 
dialogue management, facilitating portability to new system tasks. 

3 The variety of spoken dialogue systems 
Whilst the task-oriented SDS application paradigm was becoming entrenched during the 1990s, 
researchers were discovering that the full potential of SDSs stretches far beyond the common task-
oriented SDS. As a result, the multi-dimensionality of the SDS problem space has never been more 
apparent than today. To identify some of the key dimensions, it may be useful to take a basic version 
of the task-oriented SDS described in Section 2 as our model. We then conceptually “grow” the model 
in order to generate the far larger space confronting SDS researchers today. More explicitly, the basic 
model defines a task-oriented, single-task, single-user, all-users-are-equal, speech-only, fixed-
telephone-based, information system SDS. Made more explicit like this, the model generates, through 
completion, the following modifications or aspects of SDSs in conceptual space: 

1. non-task-oriented SDSs; 
2. multiple-task SDSs;  
3. multi-speaker SDSs;  
4. on-line user modelling SDSs;  
5. multi-modal (non-speech-only) SDSs; 
6. ubiquitous SDSs;  
7. non-information system SDSs.  

This is an impressive list which includes some very large-scale challenges, such as the merely 
negatively defined (1), (5) and (7), and only a single challenge of comparatively modest proportions, 
i.e. (2). Moreover, since the SDS aspects listed are mostly orthogonal, except for (1) and (2), and 
hence may be combined at will, the combinatorial possibilities are quite significant. To be sure, many 
of the SDSs in this new combinatorial space need not be more complex, in technical terms, than 
complex task-oriented systems, although many other systems will be. The point, rather, is that, broadly 
speaking, we know far less about the usability of SDSs with some or all of the properties listed above 
than about the usability of basic task-oriented SDSs. The aspects may be briefly described as follows. 
(1) Non-task-oriented SDSs include all SDSs whose purpose is not to enable users to complete (a) 
specific task(s). We also call these systems domain-oriented systems. At the limit, these systems 
include systems able to pass the classical Turing test [Turing 1950]. For the developer, the primary 
characteristic of these systems is that it is no longer possible to use the powerful constraints provided 
by the task in their development. For this reason, domain-oriented systems are only beginning to be 
explored today. An example is the NICE system (Natural Interactive Communication for Edutainment, 
http://www.niceproject.com/) which will enable conversation with fairy-tale author Hans Christian 
Andersen [Bernsen 2003a]. 
(2) Multiple-task SDSs are SDSs which help users solve more than a single task. Such systems already 
exist, for instance for checking both email and calendar over the phone. However, when the tasks are 
mutually interdependent, so that, for instance, one task may be interrupted in order to do another, and 
then resumed, or may be interrupted by output belonging to an already accomplished task, a new state 
of the art challenge arises. We have addressed this problem in a car information system in which users 
could, e.g., interrupt and later resume a complex hotel reservation task to negotiate navigation to the 
nearest petrol station [Charfuelán and Bernsen 2003]. 
(3) Multi-speaker SDSs represent another recent challenge. An influential current scenario comes close 
to addressing the challenge. The scenario is that of the smart-room automated meeting secretary which 
keeps track of the meeting agenda, recognises, understands, and transcribes all individual meeting 
contributions, summarises these, summarises the meeting as a whole, lists action points, etc. Often, 
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computer vision is planned to be added to the smart-room set-up to assist in solving these tasks. Whilst 
the secretary does not quite need to be an SDS, the example suggests how the sky is the limit in 
developing future collaborative systems involving SDSs. Challenges include, e.g., speaker 
identification and speaker separation in cases of overlapping speech.  
(4) On-line user modelling SDSs are able to adapt their interactive behaviour to a particular user or to 
users belonging to a certain user group based on observation of the user’s interactive behaviour. This 
is another emerging research area. As part of the system referred to in (2) above, we built one of the 
few existing examples of an SDS which creates, maintains, and uses models of its individual users in 
order to facilitate the complex hotel selection and reservation task [Bernsen 2003b]. 
(5) Multi-modal (non-speech-only) SDSs constitute a huge field of research and application potential. 
An early example of a multimodal SDSs is the Swedish Waxholm information system [Bertenstam et 
al. 1995]. Spoken dialogue was used to bring up Stockholm archipelago boat time-tables and other 
information on the screen which also included a talking face. Since Waxholm, many research projects 
have begun to nibble into the challenges posed by multimodal SDSs, including large projects, such as 
German SmartKom 1998-2003 [http://www.smartkom.org/] which investigated task-oriented spoken 
dialogue in combination with animated interface agent output and camera-captured gesture input. See 
also Section 5. 
(6) Ubiquitous SDSs comprise, roughly, mobile SDSs embedded in all manner of portable and 
otherwise mobile systems, including, e.g., mobile phones and cars, as well as (relatively) stationary 
ambient intelligence applications which may be embedded anywhere, including in the refrigerator and 
the VCR. 
(7) Non-information system SDSs are all SDSs which do not serve purposes of information-seeking 
and -provision. Educational and tutorial SDSs have been investigated for some time already but these 
systems might be viewed as a particular pedagogical variety of information systems, see, e.g., [Cassell 
et al. 2000]. Clearly, however, entertainment SDSs are not information systems at all. SDSs for 
edutainment and entertainment are only beginning to be explored, one example being the NICE 
system mentioned under (1) above. 

4 Usability of task-oriented SDSs 
Today, arguably, we have a pretty strong state-of-the-art baseline for building usable task-oriented 
SDSs. This baseline is composed of (i) general HCI best practices, such as: start doing usability 
evaluation as early as possible during development; do your domain and task analysis properly and in 
depth; know the users; and know the application environment; (ii) methods for usability which are 
particularly helpful in SDS development, such as the Wizard of Oz simulation method in which an 
SDS is simulated by one or more humans to users who are made to believe that they are 
communicating with a real system [Bernsen et al. 1998]; and (iii) substantial work on usability 
evaluation criteria for task-oriented SDSs. This latter work is reviewed in this section followed by a 
short discussion of some remaining challenges. 
Based on [Bernsen et al. 1998] and comprehensive empirical investigation of a series of task-oriented 
SDSs in the EU DISC project (1997-1999, www.disc2.dk), [Dybkjær and Bernsen 2000] propose a set 
of 14 objective (quantitative or qualitative) and subjective usability evaluation criteria. To some 
modest extent, the criteria are specialised to the, in general, at least, harder case of walk-up-and-use 
SDSs. This is in view of the well-known fact that routine users may adapt to interfaces which are sub-
optimal from the point of view of walk-up-and-use users. Still, even the latter users may use the 
system regularly and developers should take this into account. 
The 14 criteria are: modality appropriateness; input recognition accuracy; coverage of user vocabulary 
and grammar; output voice quality; output phrasing adequacy; feedback adequacy; adequacy of 
dialogue initiative relative to the task(s); naturalness of the dialogue structure relative to the task(s); 
sufficiency of task and domain coverage; sufficiency of reasoning capabilities; sufficiency of 
interaction guidance; error handling adequacy; sufficiency of adaptation to user differences; and user 
satisfaction. Each criterion is explained below. 
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1) Modality appropriateness. Before making the decision to use speech, dialogue designers should 
make sure that spoken input and output, possibly combined with other input/output modalities, is 
an appropriate modality choice for the planned application. As speech-based interfaces have begun 
to be combined with other input and/or output modalities, this issue has increased in importance. 
Applied theoretical results on how to do this are presented in Section 5. 

2) Input recognition accuracy. Good recogniser quality is a key factor in making users confident that 
the system will successfully get what they say. Noisy environments and large vocabularies, say, 
+5000 words, still pose significant problems for achieving high-accuracy speaker-independent 
recognition. Basic recognition accuracy is relatively easy to measure and quantify. However, the 
information-rich speech signal continues to pose research challenges, such as speaker 
identification, speaker separation, or prosody recognition, solutions to which would greatly benefit 
the usability of SDSs. A broad overview of the state of the art can be obtained from the 2003 
Eurospeech Proceedings [Bourlard 2003]. 

3) Adequate coverage of user vocabulary and grammar. Speaking to an SDS should be as easy and 
natural as possible. Even if the system’s speech recognition is perfect in principle, users will still 
have problems being understood if the system’s input vocabulary and grammar are not the ones 
which users are likely to use for the task. Moreover, what users experience as natural input speech 
is highly relative to the system’s output phrasing, cf. (5) below. Thus, the system’s output 
language should be used to control-through-priming users’ input language to help the latter 
become manageable for the system whilst still feeling natural to users. The state of the art in 
quantifying the quality of grammars and lexicons for SDS natural language understanding is rather 
advanced today. However, theory in support of building “the right” real-time robust natural 
language understanding technology for ever-changing SDS application types is still quite weak 
and characterised by experimental trial-and-error. People do not speak the same way as they write, 
and complex syntactic parsing based on advanced grammar formalisms often fail on the real-time 
requirement to SDSs. 

4) Output voice quality. From the user’s point of view, good SDS output voice quality means that the 
system’s speech is clear and intelligible, does not demand additional listening effort, is not 
particularly noise-sensitive or distorted by extraneous sounds, has natural intonation and prosody, 
uses an appropriate speaking rate, and is pleasant to listen to [Karlsson 1999]. Good progress has 
been made in recent years but taken together, these requirements are still impossible to meet no 
matter which speech synthesis technology one chooses. The application-induced pressure for 
getting better speech synthesis seems to be growing due to, for instance, the need for expressing 
the personality and emotions of different animated characters. Voice quality evaluation continues 
to include an important element of subjective evaluation. 

5) Output phrasing adequacy. As noted under (3) above, the system’s output lexicon and grammar 
strongly co-determine how users speak to the system. When used smartly, this can help improve 
the success of user-system communication. Moreover, the contents of an SDS’s spoken output is 
an key factor in determining the system’s usability. Applied theoretical results on how to ensure 
adequate output phrasing are presented in Section 6. 

6) Feedback adequacy. This point could, in fact, be viewed as part of (5) above. The user must feel 
confident that the system has understood the information input in the way it was intended, and the 
user must be told which actions the system has taken and possibly what the system is currently 
doing. While these requirements may seem obvious to GUI (graphical user interface) designers, 
they pose very different problems in SDSs because of the nature of the acoustic modality in 
general and speech in particular, cf. also Section 5. Evaluation of feedback adequacy is a 
qualitative measure based on empirical data. 

7) Adequacy of dialogue initiative relative to the task(s). To support natural interaction, an SDS 
needs a reasonable choice of dialogue initiative, depending on factors such as the nature of the 
task, users’ background knowledge, and frequency of use. Initiative adequacy must be evaluated 
relatively to these factors. For instance, if routine users of the SDS know exactly what the system 
can and cannot do and how to interact with it, the system may hardly need to take the initiative at 
all during dialogue. With novice users, as in walk-up-and-use systems, system-driven dialogue 
may be preferable and also experienced as natural by users. It is perfectly possible today to 
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develop mixed-initiative dialogue for all or most information tasks, but this is not always an 
optimal solution and it does impose more complex dialogue management, including error 
handling, cf. (12). 

8) Naturalness of the dialogue structure relative to the task(s). Tasks have more or less inherent 
structure. For instance, most users will know intuitively that it makes little sense to ask for 
departure time before they have told the system from where they want to travel and where they 
want to go. A frequently asked questions list, on the other hand, has little inherent structure. 
Depending on task structure and complexity, dialogue designers may have to impose some amount 
of additional structure onto the dialogue, determining which topics (or sub-tasks) could be 
addressed when. It is important that the structure imposed on the dialogue is as natural to the user 
as possible, reflecting the user’s intuitive expectations or, at least, not contradicting them. 

9) Sufficiency of task and domain coverage. Even if unfamiliar with SDSs, users often have rather 
detailed expectations to the information or service which they should be able to obtain from the 
system. It is essential that the system meets these expectations to the extent possible. If, for some 
reason, it does not fully meet them, the user must be informed somehow. This work requires task 
and domain expertise, task analysis, and interaction data analysis. 

10) Sufficiency of reasoning capabilities. Contextually adequate reasoning is a standard issue in the 
design of natural interaction. SDSs must incorporate both facts and inferences about the task as 
well as general world knowledge in order to act as adequate interlocutors. A task does not have to 
be very complex before primitive solutions, such as command keywords or spoken menus from 
which the user can choose, become unwieldy. In such cases, the system must be designed to 
understand and process what users actually say rather than what the developers would have liked 
them to say. This may require substantial system reasoning. For example, reasoning about dates 
may be quite complex if the system is to understand, in general, the meaning of utterances such as 
“We will depart three days later, that is, right after the weekend”. 

11) Sufficiency of interaction guidance. Users should feel in control throughout interaction. Useful 
help mechanisms may be an explicit or implicit part of the spoken dialogue; be available on 
request by saying “help”; or be automatically enabled if the user is having problems repeatedly, 
for instance in being recognised. Arguably, GUI designers have never solved the contextual help 
problem of providing only the exact help needed when it is needed. The temporal transience of 
speech means that (unimodal) SDSs cannot offer a static user interface during interaction. Rather, 
novice users have to be told what the system can and cannot do and how to interact with it. Even 
for only modestly complex tasks, this cannot be done explicitly, which is why factors, such as 
output phrasing adequacy (5), feedback adequacy (6), natural dialogue initiative (7), natural 
dialogue structure (8), and intuitive task coverage (9) are so important. 

12) Error handling adequacy. This issue may be decomposed along two dimensions. Either the system 
initiates error handling meta-communication or the user initiates error-handling meta-
communication. When error-handling meta-communication is initiated, it is either because one 
party has failed to hear or understand the other or because what was heard or understood is false, 
or it is because what was heard or understood is somehow in need of clarification. As a general 
rule, error correction meta-communication is easier to deal with in SDSs than clarification meta-
communication [Bernsen et al. 1998]. However, the field of research into on-line error handling in 
SDSs is large and growing, and it is not possible to do it justice in the present paper. 

13) Sufficiency of adaptation to user differences. It seems useful to distinguish between system 
expert/domain expert, system expert/domain novice, system novice/domain expert and system 
novice/domain novice users. A particular SDS needs not support all four groups. Until very 
recently, in the context of SDSs, the all-dominant interpretation of “adaptation” was design-time 
adaptation. For instance, dialogue structure, feedback mechanisms, or dialogue initiative was 
determined at design-time for a particular target user group and only very modest on-line 
adaptation mechanisms were included, such as the option to skip the system’s introduction to 
itself, or barge-in which enables the user to interrupt the system before it has finished its spoken 
output. On-line user modelling for SDSs offer entirely new opportunities for adaptation to user 
differences, cf. Section 3. 
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14) User satisfaction. This evaluation criterion is standardly applied through the use of questionnaires 
and interviews, yielding subjective evaluation measures. Questionnaire design still lacks 
established guidelines, and questionnaire results remain hard to interpret. The PARADISE 
framework [Walker et al. 2000] is an interesting, and somewhat controversial, attempt to correlate 
selected objective performance measures, such as transaction success and others, with user 
satisfaction in order to enable prediction of the latter from the former. 

When applied correctly and in a timely fashion during development, the usability criteria listed above 
support comprehensive-if-not-exhaustive usability evaluation of a particular SDS. As expert 
evaluation is often difficult to obtain, quantitative evaluation remains an important issue. An important 
quantitative evaluation measure not mentioned so far is transaction success. The idea is to measure the 
extent to which the task was successfully completed, for instance, whether the system actually booked 
the flight ticket specified by the user [Bernsen et al. 1998]. However, high transaction success, in this 
sense, is compatible with cumbersome and not very user friendly dialogue design, lots of unnecessary 
error correction, etc. All it takes is a very persistent user! Furthermore, many task-oriented systems do 
not solve “monolithic” tasks such as the booking of a flight ticket. A frequently asked questions 
system, for instance, must solve as many tasks as the user asks questions. Domain-oriented systems do 
not solve tasks at all. For reasons such as these, attempts are being made to clearly define more fine-
grained dialogue success measures, looking at the success of processing each individual user input, 
counting the number of meta-communication turns, etc. As for quantifying the smoothness of spoken 
dialogue, measuring the number of interaction problems is an interesting approach which will be 
discussed in Section 6. 

5 When (not) to use speech 
The idea of speech-including multimodal interaction goes back, at least, to Bolt’s idea of speaking into 
a graphical (screen) output environment [Bolt 1980]. In this context, the term “modality” may be 
traced back to Hovy and Arens’ observation that e.g., tables, beeps, written and spoken natural 
language may all be termed ‘modalities’ in some sense [Hovy and Arens 1990]. This intriguing remark 
led one of the present authors to develop a theory, called modality theory, of unimodal and multimodal 
(re-)presentation of information in the physical media of graphics/light, acoustics/sound and 
haptics/touch, i.e. the media for information representation and exchange which would be available at 
the human-computer interface in the foreseeable future [Bernsen 1994]. The theory is based on 
generation from basic principles of an exhaustive set of unimodal output modalities in those media at a 
particular level of abstraction. The generated unimodal modalities can then be abstracted at higher 
levels of description as well as detailed-by-analysis at as many lower levels of description as required. 
Having been uniquely identified in this way, each unimodal modality can be analysed in detail at each 
level of abstraction, and, per level of abstraction, the unimodal modalities present at this level can be 
used to generate, or decompose, all possible multimodal combinations. Let us explain how this works 
by reference to Figure 5.1 from [Bernsen 2002] which shows the taxonomy of output modalities in 
modality theory. 
The first-generated level is the generic level (second column from the left). At the super level (first 
column from the left), the generated modalities have been classified into linguistic, analogue, arbitrary 
and explicit modalities, respectively. This higher-level classification can be done in other ways, 
yielding differently organised modality trees with exactly the same unimodal modalities, such as a tree 
organised according to acoustic, graphic, and haptic modalities, or a tree organised according to static 
and dynamic modalities. So far, the generic-level arbitrary (13-16) and explicit structure (17-20) 
modalities do not seem to need further expansion. Arbitrary modalities include, e.g., the use of 
arbitrary output sounds for alarms. Explicit structure modalities include, e.g., the ubiquitous boxes 
used for grouping information in GUIs. An analogue modality is an information representation which, 
by contrast with most parts of most linguistic modalities, has perceivable similarity with what it 
represents. 
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Analogue

9. St. graphic

10. St./dy. acoustic

11. St./dy. haptic

12. Dy. graphic 

Arbitrary

13. St. graphic

14. St./dy. acoustic

15. St./dy. haptic

16. Dy. graphic

Explicit

17. St. graphic

18. St./dy. acoustic

19. St./dy. haptic

20. Dy. graphic

9d1. Line graphs

9d2. Bar graphs

9d3. Pie graphs

9a. Images

9b. Maps

9c. Compositional diagrams

9d. Graphs

9e. Conceptual diagrams

11a. Images

11b. Maps

11c. Compositional diagrams

11d. Graphs

11e. Conceptual diagrams

12a. Images

12b. Maps

12c. Compositional diagrams

12d. Graphs

12e. Conceptual diagrams

10a. Images

10b. Maps

10c. Compositional diagrams

10d. Graphs

10e. Conceptual diagrams

Linguistic

1. St. analogue graphic

2. St./dy. analogue acoustic

3. St./dy. analogue haptic

4. Dy. analogue graphic

5. St. non-analogue graphic

6. St./dy. non-analogue acoustic

7. St./dy. non-analogue haptic

8. Dy. non-analogue graphic

5a1. Typed text

5a2. Hand-written text

5b1. Typed lb./kw.

5b2. Hand-written lb./kw.

5c1. Typed notation

5c2. Hand-written notation

8a1. Typed text

8a2. Hand-written text

8b1. Typed lb./kw.

8b2. Hand-written lb./kw.

8c1. Typed notation

8c2. Hand-written notation

4a. St./dy. gestural discourse

4b. St./dy. gestural lb./kw.

4c. St./dy. gestural notation

7a. Haptic text

7b. Haptic lb./kw.

7c. Haptic notation

5a. Written text

5b. Written lb./kw.

5c. Written notation

6a. Spoken discourse

6b. Spoken lb./kw.

6c. Spoken notation

8a. Dy. written text

8b. Dy. written lb./kw.

8c. Dy. written notation

8d. St./dy. spoken text/discourse

8e. St./dy. spoken lb./kw.

8f. St./dy. spoken notation

Super level
Generic level
Atomic level
Sub-atomic level
St. = static
Dy. = dynamic
lb./kw. = labels/keywords

 
Figure 5.1. The taxonomy of unimodal output modalities. The four levels are, from left to right: super 

level, generic level, atomic level and sub-atomic level. 

The generic-level linguistic (1-8) and analogue (9-12) modalities are expanded in more detail at the 
atomic level. It is at the atomic level that one finds many familiar unimodal output modalities, such as 
graphically presented gesture (4a-c), graphical and haptic (e.g., Braille) static written text (5a, 7a), 
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spoken discourse (6a), and static and dynamic graphical images (9a, 11a). To illustrate the unlimited 
“downwards” extensibility of the unimodal output hierarchy, static graphical written text (5a), for 
instance, such as the text which the reader is reading right now, is expanded at the sub-atomic level 
into typed (5a1) and hand-written (5a2) modalities. If one wants to generate-through-expansion, for 
instance in order to analyse in more detail, animated output faces, one would have to expand from the 
atomic to the sub-atomic level the generic-level modality dynamic graphic images (12a). 
Once the unimodal modalities have been uniquely identified as shown in Figure 5.1, it becomes 
possible to analyse their individual modality properties in depth. Much of this is still unpublished 
work. Importantly, the hierarchical organisation of the modality tree means that properties are 
inherited downwards in the hierarchy. Thus, once the properties of, e.g., acoustics have been analysed, 
these properties get inherited by spoken discourse (6a). For instance, speech is omnidirectional 
because sound is omnidirectional. As we know, the omni-directionality of speech has important 
implications for the use of speech in human-computer interfaces. It is this property of speech which 
implies that speech is undesirable for providing bank account numbers to bank teller machines on the 
street. The analysis of spoken discourse only has to add to the analysis of acoustic information the - 
incidentally, quite rich - peculiarities of spoken discourse information over and above what already 
characterises acoustic information in general. 
Based on analysis of what turned out to be the relevant modality properties, we have applied modality 
theory to the issue of speech functionality, i.e. the question of when (not) to use speech for interfacing 
with computer systems. It is easy to see from Figure 5.1 that the combinatorics of potential unimodal 
modality combinations which include speech are quite significant if one, for instance, wishes to 
investigate all <n modality combinations where n = 11. Therefore, rather than analysing all possible 
combinations, we did two studies of the literature. In the first study [Bernsen 1997], all of the 120 
speech functionality claims made in the +20 papers in [Baber and Noyes 1993] were evaluated by 
reference to modality properties. Reflecting the state of the art at the time, [Baber and Noyes 1993] 
included rather few claims about the use of speech in a multimodal context. So, the second study 
[Bernsen and Dybkjær 1999a, b], using the same methodology, evaluated all of the 153 speech 
functionality claims made in a selection of +20 papers published between 1993 and 1998. Each of this 
total of 273 claims were evaluated as to whether a claim was justified, supported, or corrected by 
modality properties.  
An example of a claim evaluation is: 
 

48. Interfaces involving spoken ... input could be particularly effective for interacting with 
dynamic map systems, largely because these technologies support the mobility [walking, driving 
etc.] that is required by users during navigational tasks. [14, 95] 
Data point 48. Generic task [mobile interaction with dynamic maps, e.g. whilst walking or 
driving]: a speech input interface component could be performance parameter [particularly 
effective].  
Justified by MP5: “Acoustic input/output modalities do not require limb (including haptic) or 
visual activity.” Claims type: Rsc. (recommends speech in a multimodal combination). 
NOTE: The careful wording of the claim “Interfaces involving spoken ... input”. It is not being 
claimed that speech could suffice for the task, only that speech might be a useful interface 
ingredient. Otherwise, the claim would be susceptible to criticism from, e.g., MP1. Note also that 
the so-called “dynamic maps” are static graphic maps, which are interactively dynamic. 
True. 
 

What we found was that the use of modality properties justified, supported, or corrected 97% of the 
claims in the first study of 120 claims and 94% of the claims in the second study of 153 claims. 
Assuming the representativity of the analysed claims with respect to all possible claims about speech 
functionality, modality properties are demonstrably quite relevant to judging speech functionality in 
early SDS design and development.  
Equally interesting was the following finding. The 120 evaluations made in the first study required 
reference to 18 modality properties. However, despite the fact that the 153 claims evaluated in the 
second study were far more concerned with the use of speech in many different multimodal contexts, 
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their evaluation only required addition of a mere seven modality properties. For what it is worth, this 
lends plausibility to the conclusion that the issue of when (not) to use speech becomes tractable when 
addressed on the basis of modality theory. Table 5.1 shows a fragment of the modality properties used 
in the evaluation. 
 

No. Modality MODALITY PROPERTY 
MP1 Linguistic 

input/output 
Linguistic input/output modalities have interpretational scope, which makes 
them eminently suited for conveying abstract information. They are 
therefore unsuited for conveying high-specificity information including 
detailed information on spatial manipulation and location. 

MP2 Linguistic 
input/output 

Linguistic input/output modalities, being unsuited for specifying detailed 
information on spatial manipulation, lack an adequate vocabulary for 
describing the manipulations. 

MP3 Arbitrary 
input/output 

Arbitrary input/output modalities impose a learning overhead which 
increases with the number of arbitrary items to be learned. 

MP4 Acoustic 
input/output 

Acoustic input/output modalities are omnidirectional. 

MP5 Acoustic 
input/output 

Acoustic input/output modalities do not require limb (including haptic) or 
visual activity. 

MP6 Acoustic output Acoustic output modalities can be used to achieve saliency in low-acoustic 
environments. They degrade in proportion to competing noise levels. 

MP7 
 

Static 
graphics/haptics 
input/output 

Static graphic/haptic input/output modalities allow the simultaneous 
representation of large amounts of information for free visual/tactile 
inspection and subsequent interaction. 

Table 5.1. Examples of modality properties. 

6 Guidelines for cooperative spoken dialogue  
The call for guidelines in support of interaction design is not new. In HCI, the self-defeatingly large 
guidelines sets of the 1970s became replaced by smaller and far less specific ones, such as 
Schneidermann’s ‘8 golden rules’ for general interaction design [Schneidermann 1987]. [Baber 1993] 
reviewed the need for SDS design guidelines, considering Grice’s well-established conversational 
maxims of human-human spoken conversation [Grice 1975] and Schneidermann’s rules. He concluded 
that it was far from obvious how to use such principles for SDS design. [Bernsen et al. 1998] argued 
that a key to successful dialogue design is to ensure adequate system co-operativity during interaction. 
To this end, they present a set of empirically based guidelines for task-oriented, shared-goal spoken 
interaction, which, at a late stage in their development, had come to incorporate the Gricean maxims. 
System co-operativity is the best possible means for preventing the need for on-line error handling 
during spoken dialogue. On-line error handling hampers task completion, has a negative effect on user 
satisfaction, and is, in some respects, at least, difficult to design for. 
The guidelines cover seven different aspects of interaction. An aspect serves to highlight the property 
of interaction addressed by a particular guideline, thus identifying dimensions of co-operativity over 
and above the level of the cooperative guidelines themselves. At guideline level, we distinguish 
between generic and specific guidelines (GGs and SGs). A generic guideline is general and typically 
states: "Do (make, be, avoid, provide, etc.) X". A generic guideline may subsume one or several 
specific guidelines related to the generic guideline in a kind-of relationship. Specific guidelines 
specialise the generic guideline to certain classes of phenomena, thus elaborating what the interaction 
model developer should be looking for when designing cooperative system behaviour. 
The guidelines were originally developed during the design, implementation and test of the interaction 
model for the Danish Dialogue System, 1991-1996 [Bernsen et al. 1996, Bernsen et al. 1998]. A first 
set of guidelines was developed on the basis of analysis of 120 examples of user-system interaction 
problems identified in a corpus of dialogues from Wizard of Oz (WOZ) simulations of the system. The 
guidelines were then refined and consolidated through comparison with Grice’s maxims which turned 
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out to form a proper subset of the guidelines. The consolidated guidelines were tested as a tool for the 
diagnostic evaluation of a corpus of 57 dialogues collected during a scenario-based, controlled user 
test of the implemented Danish Dialogue System. Nearly all dialogue design errors in this corpus 
could be classified as violations of the guidelines. Only two specific guidelines on meta-
communication, SG10 and SG11 (see below), had to be added. This was no surprise as meta-
communication had not been simulated and hence was mostly absent in the WOZ corpus. 
Completeness of the guidelines set has later been tested on other corpora from shared-goal, task-
oriented spoken human-computer dialogue, showing no need for adding new guidelines [Dybkjær et 
al. 1997]. 
In the following we take a brief walkthrough of the guidelines. A * means that a guideline corresponds 
to a Gricean maxim. ‘Meta-communication’, or communication about the communication itself, means 
that communication error handling takes place, resulting in “lost” dialogue turns, user dissatisfaction, 
and potential transaction failure. In most applications, user-initiated clarification meta-communication, 
in particular, commands respect among SDS developers because it is difficult or impossible to design 
for. More details on the guidelines, including examples of violations, can be found at 
http://www.disc2.dk/tools/codial/. 
Aspect 1. Informativeness 
GG1*: Say enough. If the system’s contribution is not sufficiently informative, this will typically lead 
to misunderstanding which may only be detected much later during interaction, if at all, or, at best, 
lead to an immediate request for clarification by the user. 
SG1: State commitments explicitly. Commitments made during the dialogue should be summarised to 
make sure that the key information exchanged was correctly understood, e.g., on what a user 
committed himself to buy. This is sometimes called summarising feedback. 
SG2: Provide immediate feedback. It is good practice to provide immediate, implicit or explicit 
feedback on each piece of information provided by the user which is intended to contribute to the 
achievement of the goal of the dialogue, such as making a flight ticket reservation. The sooner 
misunderstandings can be corrected, the better. 
GG2*: Don’t say too much. The user may become inattentive or try to interrupt if too much 
information is being provided in a single system turn. In the worst case, the user may start clarification 
meta-communication as a result. 
Aspect 2. Truth and evidence 
GG3*: Don’t lie. The user must be able to trust what the system says. Users have good reason to 
become annoyed if the system provides false information on, e.g., departure times, prices or meeting 
venues. Still, this may happen, for instance because of bugs in the database. 
GG4*: Check what you say. The system must make sure that information is correct before giving it to 
the user. Otherwise, the implication may be very much the same as for GG3. 
Aspect 3. Relevance 
GG5*: Be relevant. Lack of relevance in the system's utterances will typically lead to confusion and 
clarification dialogue. System output irrelevance may be caused by misrecognition or 
misunderstanding. The system’s reply may be perfectly relevant given its interpretation of the user’s 
utterance but totally irrelevant given what the user actually said. 
Aspect 4. Manner 
GG6*: Avoid obscurity. Obscurity naturally leads to doubt and need for clarification in the user. 
Therefore it should be carefully checked that the system’s output is not obscure. 
GG7*: Avoid ambiguity. Ambiguity creates a need for clarification if detected by the user. If 
undetected, as often happens, the user may select a non-intended meaning of system output, and 
anything can go wrong leading to repair meta-communication or even transaction failure. 
SG3: Ensure uniformity. Uniform formulations of a question may ensure that it is interpreted in the 
same way in different contexts. Moreover, the use of uniform formulations helps reduce users’ 
vocabulary because users tend to model the phrases used by the system. The drawback is the risk that 
the dialogue appears monotonous. 
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GG8*: Be brief. The user may become bored and inattentive, and surprisingly quickly so, or may try 
to interrupt if the system talks too much. 
GG9*: Be orderly. To avoid user-initiated clarification, the system should address the task-relevant 
topics of interaction in an order which is as close as possible to the order expected by the user. 
Studying the structure of human-human conversation in the domain for which the system is being 
designed may support orderly interaction design. 
Aspect 5. Partner asymmetry 
GG10: Highlight asymmetries. A non-normal interaction partner should inform its partners of the 
particular non-normal characteristics which they should take into account in order to act cooperatively, 
e.g. limited understanding capabilities. However, such requests must be feasible. If they are not, 
difficult or impossible cases of miscommunication may proliferate. 
SG4: State your capabilities. Users must be told what the system knows about and what are its 
limitations. This can be difficult but is of particular importance in walk-up-and-use systems where 
users do not have access to, e.g., written information about the system. 
SG5: State how to interact. Like SG4, SG5 addresses both the system’s task capabilities and its 
communication capabilities. If the system is unable to handle some task in a standard way or is only 
able to handle the task in one among several standard ways, this should be communicated to users to 
prevent interaction failure.  
Aspect 6. Background knowledge 
GG11: Be aware of users’ background knowledge. The system needs to adjust to users’ background 
knowledge and inferences based thereupon. Otherwise, the users may fail to understand the system 
and initiate clarification meta-communication. 
SG6: Be aware of user inferences. If the system does not take into account possible user inferences by 
analogy, this may invite users to ask clarification questions or leave them with unanswered questions. 
SG7: Adapt to the target group. There are major differences between the needs of novice and expert 
users. If the system favours expert users, it is likely to fail as a walk-up-and-use system. If it favours 
novice users, it is likely to be perceived as cumbersome and redundant by expert users. 
GG12: Be aware of user expectations. To be an expert within its declared domain of expertise, the 
system must possess the amount and types of background knowledge which a user legitimately may 
expect it to have. Otherwise users may become confused or annoyed with what they rightly regard as a 
deficient system.  
SG8: Cover the domain. The system must be able to provide appropriate domain information when 
and as required by its users. The system must also be able to make appropriate inferences to avoid 
lengthy and inefficient turn-taking which only serves to clarify something which the system could 
have inferred on its own. 
Aspect 7. Repair and clarification 
GG13: Enable meta-communication. Users as well as systems need to initiate clarification or repair 
meta-communication from time to time due to, e.g., system violation of a cooperativity guideline, user 
inattention, or system misunderstanding. 
GG9: Enable system repair. If user input cannot be interpreted as meaningful in the context, the 
system must be able to ask for repetition or otherwise indicate that it did not understand what was said. 
GG10 Enable inconsistency clarification. If the user’s input is inconsistent, clarification becomes 
necessary. The system should not try to guess the user’s priorities because if the guess is wrong, the 
user will have to initiate meta-communication instead, possibly in the form of clarification. 
GG11: Enable ambiguity clarification. If the user’s input is ambiguous, clarification becomes 
necessary. As in GG10, the system should not try to guess what the user means. 
The guidelines are used by manually evaluating if each system utterance in isolation as well as in 
context violates any of the generic or specific guidelines. If it does, this is a potential source for 
interaction problems which should be removed. Using the guidelines as design guidelines thus means 
to apply them to analytical ‘walk-throughs’ through the emerging interaction model for the SDS that is 
being designed. 
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It should be noted that guidelines may support one another as well as conflict when applied during 
interaction design. When guidelines conflict, the designers have to trade off different design options 
against one another, with each option having a different weighting of the guidelines. When designing a 
system introduction, for instance, developers may find that GG2 (don't say too much) conflicts with 
GG1 (say enough), SG4 (tell what the system can and cannot do) and SG5 (instruct on how to interact 
with the system). If the introduction is long and complex, and even if all the points made are valid and 
important, users tend to get bored and inattentive (GG8). On the other hand, if the introduction is brief 
or even non-existent, important information may have been left out, increasing the likelihood of 
interaction problems during task performance. 

7 Conclusion 
In this paper, we have presented the current baseline SDS, i.e. the task-oriented spoken dialogue 
system, and used it as a model for generating a far wider space of SDS aspects, all of which are being 
investigated today. We then briefly described three different approaches to SDS usability. The first 
approach could perhaps be said to specialise HCI to the particular field of SDS usability, whereas the 
two other approaches reach into the foundations of multimodal interaction and cooperativity in shared 
goal, task-oriented dialogue, respectively. As Section 3 on the variety of SDSs attempts to 
demonstrate, research into SDSs usability is currently facing an exponential complexity of new, 
emerging types of application. The sheer amount of new usability issues arising will, no doubt, require 
substantial effort before they can be satisfactorily resolved. 

8 References 
8.1 Literature 
[Baber and Noyes 1993] Baber, C. and Noyes J. (Eds.). Interactive Speech Technology. London: 

Taylor & Francis, 1993. 
[Baber 1993] C. Baber: Developing interactive speech technology. In Baber and Noyes 1993, 1-18. 
[Baekgaard et al. 1995] A. Baekgaard, N. O. Bernsen, T. Brøndsted, P. Dalsgaard, H. Dybkjær, L. 

Dybkjær, J. Kristiansen, L. B. Larsen, B. Lindberg, B. Maegaard, B. Music, L. Offersgaard, and 
C, Povlsen: The Danish Spoken Dialogue Project - A General Overview. Proceedings of the 
ESCA workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995, 89-92. 

[Bernsen 1994] Bernsen, N. O. Foundations of multimodal representations. A taxonomy of 
representational modalities. Interacting with Computers 6, 4, 347-71, 1994. 

[Bernsen 1997] Towards a tool for predicting speech functionality. Speech Communication 23, 181-
210, 1997. 

[Bernsen 2002] Bernsen, N. O.: Multimodality in language and speech systems - from theory to design 
support tool. In Granström, B., House, D., and Karlsson, I. (Eds.): Multimodality in Language and 
Speech Systems. Dordrecht: Kluwer Academic Publishers 2002, 93-148. 

[Bernsen 2003a] Bernsen, N. O.: When H. C. Andersen is not talking back In Rist, T., Aylet, R., 
Ballin, D. and Rickel, J. (Eds.): Proceedings of the Fourth International Working Conference on 
Intelligent Virtual Agents (IVA’2003), Kloster Irsee, Germany, 2003. Berlin: Springer Verlag 
2003, 27-30. 

[Bernsen 2003b] Bernsen, N. O.: On-line user modelling in a mobile spoken dialogue system. In 
Bourlard, H. (Ed.): Proceedings of Eurospeech’2003, 8th European Conference on Speech 
Communication and Technology, Geneva, Switzerland. Bonn: International Speech 
Communication Association (ISCA), 2003, Vol. I, 737-740. 

[Bernsen et al. 1996] Bernsen, N. O., Dybkjær, H. and Dybkjær, L.: Cooperativity in human-machine 
and human-human spoken dialogue. Discourse Processes, Vol. 21, No. 2, 1996, 213-236. 

[Bernsen et al. 1998] Bernsen, N. O., Dybkjær, H. and Dybkjær, L.: Designing Interactive Speech 
Systems. From First Ideas to User Testing. Springer Verlag 1998. 

 13



[Bernsen and Dybkjær 1999a] Working Paper on Speech Functionality. Esprit Long-Term Research 
Project DISC Report D2.10. University of Southern Denmark. See www.disc2.dk, 1999. 

[Bernsen and Dybkjær 1999b] A theory of speech in multimodal systems. In: Dalsgaard, P., C.-H. Lee, 
P. Heisterkamp & R. Cole (Eds.). Proceedings of the ESCA Workshop on Interactive Dialogue in 
Multi-Modal Systems, Irsee, Germany. Bonn: European Speech Communication Association: 105-
108, 1999. 

[Bertenstam et al. 1995] Bertenstam, J., Beskow, J., Blomberg, M., Carlson, R., de Serpa-Leitao, A., 
Elenius, K., Granström, B., Gustafson, J., Hunnicutt, S., Högberg, J., Lindell, R., Neovius, L., 
Nord, L., and Ström, N.: The Waxholm system - a progress report. In Proceedings of the ESCA 
Workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995, 81-84. 

[Bolt 1980] Bolt, R. A.: “Put-That-There”: Voice and gesture at the graphics interface, Computer 
Graphics, 14, 3, 262-270, 1980. 

[Bossemeyer and Schwab 1991] R. W. Bossemeyer and E. C. Schwab: Automated alternate billing 
services at Ameritech: Speech recognition and the human interface. Speech Technology Magazine 
5, 3, 1991, 24-30. 

[Bourlard 2003] Bourlard, H. (Ed.): Proceedings of Eurospeech’2003, 8th European Conference on 
Speech Communication and Technology, Geneva, Switzerland, 2003. Bonn: International Speech 
Communication Association (ISCA), 2003. 

[Cassell et al. 2000] Cassell, J., Sullivan, J., Prevost, S., Churchill, E. (Eds.): Embodied 
Conversational Agents. MIT Press, Cambridge, MA (2000). 

[Charfuelán and Bernsen 2003] Charfuelán, C. and Bernsen, N. O.: A task and dialogue model 
independent dialogue manager. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N., and 
Nikolov, N. (Eds.): Proceedings of the International Conference on Recent Advances in Natural 
Language Processing (RANLP-2003), Borovets, Bulgaria, 2003. INCOMA, Shoumen, Bulgaria 
2003, 91-97.  

[DARPA 1992] DARPA. Proceedings of the Speech and Natural Language Workshop. San Mateo, 
CA, Morgan Kaufmann, 1992.  

[Dybkjær and Bernsen 2000] Dybkjær, L. and Bernsen, N. O.: Usability issues in spoken language 
dialogue systems. In Natural Language Engineering, Special Issue on Best Practice in Spoken 
Language Dialogue System Engineering, Volume 6 Parts 3 & 4, 2000, 243-272. 

[Dybkjær et al. 1997] Dybkjær, L., Bernsen, N. O. and Dybkjær, H.: Generality and objectivity. 
Central issues in putting a dialogue evaluation tool into practical use. Proceedings of the 
ACL/EACL Workshop on Spoken Dialog Systems, Madrid, 1997. 

[Grice 1975] Paul Grice: Logic and conversation. In P. Cole and J. L. Morgan (Eds.), Syntax and 
Semantics Vol. 3: Speech Acts. New York: Academic Press 1975, 41-58. 

[Haton 1988] J. Haton: Knowledge-based approaches in acoustic-phonetic decoding of speech. In 
Heinrich Niemann, M. Lang, and G. Sagerer (Eds.): Recent Advances in Speech Understanding 
and Dialog Systems. NATO ASI Series, Vol. F46, Berlin, Springer Verlag, 1988, 51-70. 

[Hovy and Arens 1990] When is a picture worth a thousand words? Allocation of modalities in 
multimedia communication. Paper presented at the AAAI Symposium on Human-Computer 
Interfaces, Stanford, 1990. 

[Karlsson 1999] A survey of existing methods and tools for development and evaluation of speech 
synthesis and speech synthesis quality in SLDSs. DISC Report D2.3, 1999. 

[Niemann et al 1988] H. Niemann, A. Brietzmann, U. Ehrlich, S. Posch, P. Regel, G. Sagerer, R. 
Salzbrunn, and G. Schukat-Talamazzini: A knowledge based speech understanding system. 
International Journal of Pattern Recognition and Artificial Intelligence 2, 2, 1988, 321-350. 

[Peckham 1993] J. Peckham: A new generation of spoken dialogue systems: Results and lessons from 
the SUNDIAL project. In Proceedings of Eurospeech’93, Berlin, Germany, 1993, 33-40. 

[Schneidermann 1987] Ben Schneidermann: Designing the User Interface. Reading, MA, Addison-
Wesley, 1987. 

[Turing 1950] Turing, A.: Computing machinery and intelligence. Mind 59, 1950, 433-60. 

 14



[Walker et al. 2000] Walker, M.A., Kamm, C.A. and Litman, D.J.: Towards developing general 
models of usability with PARADISE. Natural Language Engineering, Special Issues on Spoken 
Dialogue Systems, Vol. 6, No. 3, 2000. 

[Walker et al. 2002] Walker, M, Rudnicky, A., Prasad, R., Aberdeen, J., Bratt, E., Garofolo, J., Hastie, 
H., Le, A., Pellom, B., Potamianos, A., Passonneau, R., Roukos, S., Sanders, G., Seneff, S. and 
Stallard, D.: DARPA Communicator: Cross-system results for the 2001 evaluation. Proceedings 
of 7th International Conference on Spoken Language Processing (ICSLP), 2002, 269-272. 

8.2 Websites 
DISC: www.disc2.dk 
NICE: http://www.niceproject.com/ 
SmartKom: http://www.smartkom.org/ 
 

 15


	Introduction
	The emergence of the task-oriented SDS paradigm
	A brief history
	What’s inside?

	The variety of spoken dialogue systems
	Usability of task-oriented SDSs
	When (not) to use speech
	Guidelines for cooperative spoken dialogue
	Conclusion
	References
	Literature
	Websites


