

A Visual Interface for a Multimodal Interactivity Annotation
Tool: Design Issues and Implementation Solutions

Mykola Kolodnytsky, Niels Ole Bernsen, Laila Dybkjær
NISLab, University of Southern Denmark, Campusvej 55, 5230 Odense M, +45 65 50 35 51

{mykola, nob, laila}@nis.sdu.dk

ABSTRACT
This paper discusses the user interface design for the NITE
WorkBench for Windows (NWB) which enables annotation and
analysis of full natural interactive communicative behaviour
between humans and between humans and systems. The system
enables users to perceive voice and video data and control its
presentation when performing multi-level, cross-level and cross-
modality annotation, information visualisation for data coding and
analysis, information retrieval, and data exploitation.

Categories and Subject Descriptors
H5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – audio input/output, video. H5.2
[Information Interfaces and Presentation]: User Interfaces –
Graphical User Interfaces (GUI), interaction styles.

General Terms
Performance, Design, Human Factors.

Keywords
Data annotation tools, data visualisation, interface design.

1. INTRODUCTION
A basic precondition for building natural interactive systems is
consolidated theoretical knowledge about how humans commu-
nicate with one another or with a machine through modalities
such as speech, gesture, gaze, facial expression, object manip-
ulation, etc. To gain this knowledge, researchers first collect high-
quality audio and video corpora. They then annotate the corpus
data based on coding schemes (CS) which often represent consis-
tent and complete classifications of different classes of phenom-
ena found in human communication. Data annotators need coding
tools which make it as easy as possible to code new corpora and
do a number of related activities. This paper describes a coding
tool developed for these purposes and called the NITE Work-
bench for Windows, or NWB. The tool has been developed in the
European project Natural Interactivity Tools Engineering
(nite.nis.sdu.dk) and aims to eventually support full general-
purpose coding of natural interactivity corpora.

2. IMPORTANT ISSUES IN NATURAL
INTERACTIVITY CODING
In the following, we briefly explain a range of important issues,
structural and otherwise, in natural interactivity coding, which
were identified in our requirements specification of the NITE
software [1,2].
Cross-level coding. Annotation of a particular modality, such as
speech, may be done at different levels, such as orthographic
transcription, prosody, or morpho-syntax. A level of annotation is
a level of abstraction at which selected information in the raw data
can be identified, described, annotated, and analysed. Cross-level
coding consists in representing various types of links between
phenomena at different levels of annotation. An example is the
markup of prosodic cues to speech acts.
Cross-modality coding. Annotation is often concerned with the
coding of a single modality only, such as gesture, speech, or facial
expression. However, annotators may also want to link across
modalities in order to capture coordinated human communication
behaviours. For example, a user may want to cross-reference emo-
tional cues in prosody and facial expression.
Individual interactions and group interactions. Individual
interactions may overlap in time while group interactions involve
at least two parties performing a shared action, such as handsha-
king. Annotation software must support the representation of both
kinds of interaction.
Intersecting hierarchies. These are also called overlapping
hierarchies and refer to the fact that the phenomena one wants to
mark up do not always nest in a nice and regular way but may
overlap in different ways.
Long-range dependencies. A phenomenon may involve long-
range dependencies across utterances, turns and speakers, for
instance in co-reference or causal relationships. Long-range
dependencies impose demands on visualisation which must be
taken into account, i.e. we might want to display long-range
dependencies through symbolic tags or by using colour coding.
Synchronous and asynchronous phenomena. Phenomena to be
tagged may happen at the same time, i.e. synchronously, or at
different times, i.e. asynchronously. Annotation software must
support the representation and visualisation of both synchronous
and asynchronous phenomena and their interrelations.
Time alignment. The annotation tool must enable alignment of
raw data and different annotations of the raw data to the same
timeline. The timeline provides a common anchor point in time
for transcriptions and other codings, and helps sort out the seq-
uentialisation of the markup. The timeline may be shown as a line
(analogue view) or as a sequence of symbolic time tags.

3. USER INTERFACE FUNCTIONAL
REQUIREMENTS SPECIFICATION
Based on the full NWB requirements specification [2,3], the core
user interface (UI) functional requirements can be combined into
the following six groups:
1. To work with an annotation project file, i.e. create, open, save,
print or import into XML file components of a project. The pro-
ject file consists of a reference to a raw data file, references to
coding files containing annotations (including transcriptions) of
the raw data, and a reference to meta-data for each raw data file
and each coding file.
2. To enable users to specify coding schemes. To specify a coding
scheme means to create a new UI component for an annotation
scheme, or to modify structure and/or data contents of an annota-
tion scheme already entered into the NWB.
3. To control raw data audio/video files, i.e. to: visualise and play
video files created in current standard formats, such as *.mpg, or
*.avi; listen to the audio track created in current standard formats,
such as *.mp3 or *.wav; manage the raw data windows (show,
hide, move, resize); graphically represent the acoustic information
(wave-form, spectrum, etc.); have a visible timeline, zoom in/out
on the timeline, navigate back and forth in the raw data based on
the timeline, i.e. scroll, go step-by-step along the timeline, jump to
the beginning or end of the timeline; display the value of timeline
units, such as seconds, frame numbers for video data, or millisec-
onds for video and audio data; synchronize the displaying of data
in different windows on the basis of the common timeline; etc.
4. To support annotation using coding schemes. This means to use
a special-purpose (i.e. special format) file created as part of a pro-
ject and containing the coding information. We call this file a
coding file (or markup file). The coding file has to reflect the
timeline of events in the raw data. We call it "the common
timeline" or merely "the timeline". This also means to: select (i.e.
indicate) the time point or time interval onto the timeline; select
an appropriate coding scheme; select a tag from a list of tags for
the coding scheme presented in a palette; and to edit the coding
file, i.e. insert or delete tags from the coding scheme.
5. To visualise information in a customised way. This means to
provide a window or windows (or its part like a split pane) for
displaying the contents of a coding file. We shall call such a win-
dow an "annotation panel". It also means to display several anno-
tation panels at the same time and to control the appearance of a
panel on the screen, i.e. to show, hide, move, resize it, and change
some attributes of it like the title, background colour, etc. Each
annotation panel should correspond to a certain class of phenom-
ena to be coded. Since a class of phenomena could be a hierarchy
of categories and values, it should be possible to reflect this
structure using a set of "tiers" ("bands", "layers"), each of which
aims to display a particular subset of the categories. It should also
be possible to: show the location (a “cursor”) of the current posi-
tion on the timeline; synchronise the cursors in different windows:
as soon as the cursor moves in one window, it moves in the other
ones and appears within the same timeline segment; view annota-
tions and transcriptions at different levels of resolution in each
annotation panel (zoom in/out along timeline, scroll along time-
line); and visualise the result of the coding, i.e. provide various
way of displaying the tags inserted onto the timeline within the
annotation panel. The visualisation could be done using either a

special-purpose window (called an annotation panel here), and/or
directly on the window displaying the raw data (e.g. graphical
video markup, GVM) or on the audio data wave-form, or the
visualised and customised tags could be inserted onto the timeline
using the annotation panel.
6. To enable information extraction and analysis of annotated
data. This means to extract arbitrary parts of data by using, e.g.,
SQL queries, and to export, e.g., XML files to be used in external
software for statistical descriptions and analysis of data.

4. MAPPING THE REQUIREMENTS INTO
GUI PRIMITIVES
Given the core user interface functional requirements described
above, the elaboration of GUI modules has been performed by
answering questions like the following: “What does a user want to
have in the NWB GUI to be presented?”, “What kind of graphical
primitives can be used to implement those requirements?”, or
“What type of GUI architecture and underlying framework should
be chosen, if any?”
The most common GUI architectures suggested by “The Windows
95 Interface Guidelines” are the Single Document Interface (SDI)
model and the Multiple Document Interface (MDI) [4]. Although
MDI provides useful conventions for managing a set of related
windows, it is not the only means of supporting task management.
Some of its window management techniques can be applied in
alternative designs. The workspaces, workbooks, and projects
models are examples of possible design alternatives. They present
a single window design model but in a way that preserves some of
the window and task management benefits found in MDI [4].
In addition to the models mentioned above, The Rogue Wave
Stingray Studio 2002 Objective Toolkit offers yet other MDI
alternatives and enhancements, i.e. Multiple Top-level Interface
(MTI), Floating Document Interface (FDI), and Workbook
Document Interface (WDI) [5].
None of the existing GUI standard architectures entirely meets the
requirements specified above. We have therefore designed the
NWB GUI as a mixture of standard interface components as
shown in the architecture in Figure 1. The GUI interface con-
structs described in Section 5 are illustrated with screenshots.
The model of the NWB GUI can be classified as a single docu-
ment interface with multiple windows views (SDI MV). The
document is based on a database with some additional data
serialised into a file. The views are:

– a (new) child window which is like an MDI-child window but
corresponding to the same document;
– a (new) tabbed view in the same child window.
Each tabbed view represents information either in tabular (sym-
bolic) or in analogue (graphical) view. In addition, graphical
views can be presented using either the horizontal or the vertical
timeline.

Usually, each view can have a split window, i.e. each can be split
into two panes with appropriate scrolling within it. The pane, i.e.
each part of the split view, represents the same type of timeline as
the view has. The only benefit of a split window, then, is to have
an additional scrolled view that presents another part of the same
document. Since, from an implementation perspective, the split

window is a dynamical one, each view’s pane is of the same C++
view class. Here we have a development tool constraint: the MS
MFC library does not provide, directly, any other way of dynam-
ical split window creation. Another constraint is that it is only
possible to deal with two panes of the same type once, for instan-
ce, either two horizontal or two vertical ones, but it is not possible
to have a horizontal and a vertical timeline view in different panes
of the same view.

Data
Exchange

Raw Data Media File Coding File Database XML Files

Project (Document) File

M a i n W i n d o w

Con ta in s GUI
c o mp on e nt s

Ha s pr op e r t i es D i sp a t c he s a s e t of
u s er in pu t co mm and

– Menu
– Tool Bar
– Hot Keys
– Project

Management

– Size
– Font
– Icon
– Cursor
– Project Link

W o r k
S e c o n d a r y
W i n d o w (s)

T a b b e d
V i e w (s)

T a b u l a r
V i e w

G r a p h i c a l
V i e w

H o r i z o n t a l
T i m e - l i n e

V e r t i c a l
T i m e - l i n e

Edit-Time-
segment Table

Cross-View
Table

Parti ture-View
Table

G r i d
C o m p o n e n t

D B B o u n d
C o m p o n e n t

Wave-Form
View

Spectrogram
View

Etc.

Has
compo-
nents

Any
of

One
of

Video-Audio
Play Window

Control
Board

Coding
Palette

CS Specifi cation
Dialog Boxes S t a n d a r d

W i n d o w s
C o n t r o l s

D B B o u n d
C o m p o n e n t

Figure 1. The NWB GUI architecture and ontology.

Bearing such problems in mind, we decided to embed a grid into
the tabular view. The grid simulates the dynamical split window,
the grid view can be customized, and the grid contents can be
made database-aware. In addition to the child windows with views
as described, there are a number of window components of
another functional type: a video data window, a control board, a
coding scheme palette. There is also a set of dialog-windows
where the user can specify coding scheme structure and contents
in order to enter a new coding scheme. The dialogues and palettes
have a rich collection of different controls in them, such as static
text fields and group boxes, buttons, tree view controls, combo
boxes, spin boxes, slider, tab control, image, and database bound
grid controls.

5. NWB GUI WALKTHROUGH
Below, we briefly describe the workflow in the NWB user inter-
face and illustrate the solutions chosen for GUI component
implementation.

When a project file or raw data file (video or sound) is opened,
the NWB displays the Video Data window, the initially selected
default view window (tabular or wave-form) and the Control
Board window. The Video Data window and the Control Board
can be hidden or shown again from the menu at any time. The
user can also create several different child windows with different
tabbed views in them. A sample screen shot of windows/views
management is shown in Figure 2.

Figure 2. NWB windows/views management.

Since the NWB is a multi-coding scheme tool, it provides a way
to define and organise, first of all, the coding schemes a user
would like to include in the tool. Each coding scheme can be
presented as a hierarchical set of elements some or all of which
may have a list of attributes. To facilitate coding scheme entry,
there is a kind of visual editor in the NWB. A workflow example
of using the visual editor is shown in Figure 3.

Figure 3. A coding scheme and its elements/attributes

specification.
If the user wants to define attributes for an element in the coding
scheme elements hierarchy, the user first selects the element in the
tree-view control and then clicks on the Attribute List button as
shown in Figure 3. This launches another dialogue window in
which one can enter the attribute name and select an attribute type
from the type list: text, integer, double, etc. Once an element

attribute is validated using the refresh button, one can assign
possible values for the attributes using the Attribute Values button
which opens a dialogue window into which the values can be
entered. The entered data will be stored in the project database.
The coding scheme illustrated in Figure 3 can be used for ortho-
graphic transcription of the spoken dialogue contributions of each
speaker shown in the video window in Figure 4. The annotation
procedure includes the following steps, cf. the numbered labels in
Figure 4:
– to annotate a segment, position the time control at the beginning
of the segment and select the element you want to annotate, cf.
labels (1) and (2);
– then click on the insert coding segment button (3). The start and
end time marks will appear automatically in the transcription tab;
– position the time control at the end of the segment, select the
record, and click on the insert time-segment end button (4) (5).

1

2

3 5

4

Figure 4. Utterance level transcription procedure.

Figure 5. Cross-table view as a result of an SQL-query.

Figure 5 shows how annotated data can be visualised after one has
annotated and/or transcribed it. The first two grid columns corres-
pond to the annotated time segments. The following columns
correspond to elements of two different coding schemes. Thus,
Columns 3-4 include speaker references (Column 3) and orthogra-
phic transcription per speaker (Column 4). The following three

columns 5-7 include events like background noise or pause, non-
speech deictic events, such as pointing gestures, and speech
deictic tags, such as for the deictic expression “this”, respectively.
The number of grid columns is variable; it changes dynamically
according to which number of coding scheme elements have actu-
ally been used in the annotation.
It is also worth noting here that any data visualisation and
customisation is performed by underlying software components
via the use of SQL queries. This provides reliability, good perfor-
mance and flexibility of data mining and retrieval from annotated
corpora.

6. CONCLUSION AND FUTURE WORK
The system description presented in this paper demonstrates that
building an easy-to-use, general-purpose tool for the annotation
and analysis of natural interactivity data is a complex task which
needs to be staged in a number of development steps, each of
which involves extensive studies and interface structure design.
Having performed the development steps, ongoing work addresses
user testing, evaluation, and analysis of user feedback. Substantial
user evaluation of the NWB forms the basis for extending the tool
functionality.
Major planned functionality extensions include: the addition of an
analogue, non-symbolic/tabular coding view in which segmented
and tagged phenomena are viewed along with the timeline, enab-
ling direct perception of temporal relationships; facilities for com-
plex structure coding, in which phenomena tagged at different
levels but representing coordinated human communication beha-
viour, can be linked, visualised and tagged as behavioural clus-
ters; and plug-ins of specialist modules, such as new speech signal
graphical representations like pitch contour view and spectro-
gram.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support of NITE by the European
Commission’s Human Language Technologies Programme.

8. REFERENCES
[1] Bernsen, N. O., Dybkjær, L., and Kolodnytsky, M.: The

NITE Workbench for annotating natural interactive
behaviour. In: P. Paggio, K. Jokinen, and A. Jönsson (Eds.):
Proceedings of the 1st Nordic Symposium on Multimodal
Communication. CST, Copenhagen, Denmark, 2003, 155–
168.

[2] Bernsen, N. O., Dybkjær, L., and Kolodnytsky, M.: An
interface for annotating natural interactivity. In J. v.
Kuppevelt and R. W. Smith (Eds.): Current and New
Directions in Discourse and Dialogue, Dordrecht: Kluwer
2003, 35–62.

[3] Dybkjær, L., Bernsen, N.O., Carletta, J., Evert, S.,
Kolodnytsky, M. and O’Donnell, T.: The NITE Markup
Framework. NITE Report D2.2. NISlab, Odense, Denmark
2002.

[4] The Windows 95 Interface Guidelines for Software Design.
Online MSDN Library.

[5] Objective Toolkit User's Guide. Version 8.0. Rogue Wave
Stingray Studio 2002 Version 2 Online Documentation.

	INTRODUCTION
	IMPORTANT ISSUES IN NATURAL INTERACTIVITY CODING
	USER INTERFACE FUNCTIONAL REQUIREMENTS SPECIFICATION
	MAPPING THE REQUIREMENTS INTO GUI PRIMITIVES
	NWB GUI WALKTHROUGH
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

