
Representing Act-Topic-based Dialogue Phenomena

Hans Dybkjær1 and Laila Dybkjær2

1Prolog Development Center A/S (PDC),
H. J. Holst Vej 3C-5C, 2605 Brøndby, Denmark, dybkjaer@pdc.dk

2Nislab, University of Southern Denmark (SDU),
Campusvej 55, 5230 Odense M, Denmark, laila@nis.sdu.dk

Abstract. We examine phenomena in spoken human computer dialogues and
suggest possible formalisations. The work is a step towards automating spoken
dialogue systems assessment.

Keywords. Spoken dialogue, act-topic, structure analysis, transactions.

1 Introduction

Dialogue smoothness and transaction success rate are important SDS usability evalua-
tion criteria but are costly to measure manually. Automating the measurement process
would be of great benefit to the SDS community.

We suggest a two-step approach to the automatic annotation of act-topics and, even-
tually, of transactions. First, basic, context-independent act-topic annotation is added
to all system and user utterances (Figure 1, left). Basic acts include inform, accept,
reject. Second, basic acts are combined into composite acts and then further com-
bined into transaction segments tagged with success or failure (Figure 1, right).

This paper investigates the second step: what is needed to automate act-topic based
transaction structure annotation of dialogues between users and spoken dialogue sys-
tems (SDSs), such as a frequently asked questions (FAQ) system [Dybkjær and
Dybkjær 2004], a flight ticket reservation system [Bernsen et al. 1998], and a train
timetable information system [Aust et al. 1995]. As the formal vehicle for deriving
composite acts we use rewrite rules with unification and supplementary constraints.

.s: .inform {N.employee, N.leave
…}
 "You can … choose between:
 'employee' 'on leave' …"
.u: .inform {N.student}
 "I’m a student"
.s: .inform {N.menu}
 "Did you ask for – Main menu?"
.u: .inform {N.student}
 "Student"
.s: .inform {V.student, V.su …}
 "If you are a student and
 receive SU, you may …"

.s: .success {N.student}
 <- success2
 .u: .request {N.student}
 <- sequenceRequest
 .u: request {N.student}
 <- request2
 .s: inform {N.employee, N.leave …}
 .u: inform {N.student}
 .u: request {N.student}
 <- request2
 .s: inform {N.menu}
 .u: inform {N.student}
 .s: .inform {V.student, V.su …}

Figure 1: Example dialogue, annotated with acts and topics.

2 Dialogues, turns, and moves

A dialogue is a sequence of moves where each move corresponds to one act and a set
of topics for one speaker (Figure 2). An utterance is a sequence of moves of one
speaker. A turn is an utterance that further satisfies that if other moves occur at the
ends, then these moves belong to other speakers. In Figure 2, e.g., the example has one
user utterance that is also a turn, and there are two system moves that may make one or
two utterances and precisely one turn.

dialogue = move*
move = who : act topics ["text"]
who = .u | .s
act = .identifier
topics = { topic* }
topic = distinction.identifier
distinction = T | N | V

Example:
.s: .pause {}
.s: .inform {T.more}
 "Do you want more?"
.u: .accept {}
 "yes"

Figure 2: Formal structure of a dialogue.

3 Dialogue structure via rewrite rules

Rewrite rules define an acyclic graph which may be seen as the dialogue structure.
Each rule takes a move pattern and produces a new sequence of moves. A pattern is a
list of utterances but may contain variables for who, act, topics, and topic, cf. Figure 3.

rule = rule identifier
 move* <- move*
 [where condition*]
 end rule
move M = who : act topics
who W = varVal
act A = varVal
topics Ts = { topic* } | varVal
topic T = varVal
varVal = [Type]var | [Type]val
var = _identifier
val = .identifier
condition = varVal operator varVal
operator = = | != | in | not-in | <

Example:
rule select1
 _y: .select Ts_a
 <-
 _x: .inform Ts_a
 _y: .accept {}
 where
 _x != _y
end rule

Result when applied to example (Figure 2):
.s: .pause {}
.u: .select {T.more}
 <- select1
 .s: .inform {T.more}
 "Do you want more?"
 .u: .accept {}
 "yes"

Figure 3: Formal structure of rules and their application.

4 Analysing dialogue phenomena

The minimum expressiveness of the above rules would allow for one speaker, one act,
one topic, and no constraints. The table below explains and exemplifies different
needed extensions to the minimum expressiveness based on various dialogue phenom-
ena. Rule references are to Appendix A.

Different topics
Allowing several topics enables detection of two moves including the same topic.
See rule segment
Different acts
x: Are you going to Copenhagen?
y: Yes

Allowing different acts instead of only one, enables distinction among certain patterns,
such as a select pattern which may consist of an inform act telling about an option fol-
lowed by an accept act of this option.
See rule select0
Differentiating speakers
s: Are you going to Copenhagen?
u: Yes

To distinguish that moves are by different speakers, an inequality operator is needed.
See rule select1
More topics in a move
x: Do you want to know about when the money is paid, transfer of money,
 or payment in general?
y: Payment in general.

A select rule matching this example must express that speaker y states one of the topics
offered by speaker x. A member operator “T in Ts” is added as a constraint.
See rule select2
More topics in different moves
.s: .inform {T.paymentWhen, T.moneyTransfer, T.paymentGeneral}
 "Do you want to know about when the money is paid, transfer of money,
 or payment in general?"
.u: .inform {T.paymentGeneral, T.friend}
 "Payment in general, my friend."

Here we need to express that the same topic occurs in two different lists. We do so by
allowing variables to be introduced in the constraints, too, and not only in the pattern.
See rule select2a
Rejecting topics
x: Do you want to know about when the money is paid, transfer of money,
 or payment in general?
y: My employer is bankrupt.

Symmetrically to selecting a topic a speaker may reject the offered topics by requesting
a new topic, so we add the “T notT-in Ts“operator.
See rule request
Distinguishing names and values
.u: .inform {N.phone}
 "Your phone number?"
.s: .inform {N.phone}
 "Phone number"

.u: .inform {N.phone}
 "Your phone number?"
.s: .inform {V.phone}
 "Phone 48204910"

In order to distinguish the analyses of these two examples, we must distinguish topic
names (N) and values (V). By a topic name we understand the mentioning of a topic,
e.g. in terms of a user requesting information about a certain topic. By a topic value we
understand details about a certain topic, e.g. the system informing about a topic name
selected by the user.
See rules select2, answer, success1 and success2

Patterns across turns not using all the turn moves
0 .u: .inform {V.aalborg, V.tomorrow}
 "I want to go to Aalborg tomorrow."
1 .s: .inform {V.aalborg, V.aarhus}
 "Did you say to Aalborg or to Aarhus?"
2 .u: .inform {V.aalborg}
 "To Aalborg."
3 .s: .inform {V.tomorrow}
4 .s: .inform {V.aalborg}
 "Are you leaving tomorrow for Aalborg?"
5 .u: .accept {}
 "Yes."

The dialogue fragment above contains a success in selecting travel destination and date.
The moves 1+2 may be reduced to select {V.aalborg} which potentially enables us to
apply the success1 rule. However, the subsequent utterance is annotated with the moves
in a wrong order for this. There is no inherent reason why the order of moves within an
utterance or turn should be important (at the level of analysis we do), and the equivalent
formulation of move 4 above "Aalborg. Are you leaving tomorrow?" would natu-
rally have made the annotator list the moves in the reverse order.

So we will allow patterns to match moves within turns in any order, leaving unused
moves if the turns are at the ends of the pattern, otherwise dropping the unused moves.
Ontological relations
.s: .inform {N.travel, N.from}
 "Where does the travel start?"
.u: .inform {V.place}
 "Copenhagen"

When annotating each move independently of the context it becomes ambiguous what a
topic value refers to. E.g. the place “Copenhagen” may be departure or destination city.
To be able to automatically relate the question and the reply in such situations we need
to introduce the sub-topic relation T1 < T2.
See rule selectSub1
Meta-communication and multi-level rule applications
In Figure 1 it seems fair to count a success and no failures, and to count one meta-
exchange which is negative for the smoothness. If the two requests had been divided by
several exchanges or even a full transaction on another topic, it is less obvious that the
two requests should be counted as one, leading to one success. Part of a solution to
handling meta-communication involves the division of rules into several sets that are
applied successively. This reflects that naturally one would first do simple rewrites like
detecting request and select, then handle meta-communication, then transactions, and
finally issues like summarising feedback.
See rule sequenceRequest
Summarising feedback
.s: .inform {V.from, V.to, V.hour}
 "Es gibt die folgende Verbindung: Mit der S-Bahn Abfahrt in Berlin
 Hauptbahnhof um fuenfzehn Uhr vierundzwanzig Ankunft in Berlin-Zoo um
 fuenfzehn Uhr einundvierzig dort weiter mit … dort weiter mit Inter-
 city sechs fuenf zwei Abfahrt um zwanzig Uhr einundfuenfzig Ankunft in
 Darmstadt Hauptbahnhof um einundzwanzig Uhr neun"

We call such information summarising feedback. It is fairly common in information and
booking systems. Often systems implementing this have “one call – one task” dialogues,
and a simple measure of transaction success is to call it a success if the system reaches
this state, and otherwise a failure. However, at least on two points this is problematic:
• The user may disagree in the summarisation, claiming something to be wrong.
• It provides no information on dialogue smoothness up until this point.
By instead using rules like those in Appendix A and assuming the reject3 rule is ap-
plied before the successSummary rule, we may get a success/failure annotation that deals
with the above two bullet points (reject3 will block successSummary).
See rule reject3 and successSummary

5 Conclusion

By applying subsequent levels of act-topic rewrite rules we can analyse a set of dia-
logue phenomena occurring in typical SDSs, eventually leading to automatic detection
of non-smoothness and of transaction successes and failures.

Compared to other work, the two key distinguishing features of our analysis are
automation and act-topic structures. Many other papers discuss how to find acts and/or
topics [Heeman et al. 1998, Jurafsky et al. 1997], often based on statistical methods,
but are not concerned with the further structural analysis of the dialogue structure. The
probably most dominant discourse structure theory, RST (Rhetorical Structure Theory,
[Mann and Thomson 1987]), is not aimed at computational analysis.

Much work remains to be done. There are unanalysed issues regarding in particular
smoothness and summarising feedback, common to which is that they concern phe-
nomena distributed over large parts of the dialogue instead of being locally (and con-
tinuously) defined. Other issues also needing further analysis include task dependence
of rules, summaries not including all information, information stated in disguise, and
inexact matches. The rules must be tested on larger sets of dialogues of different type.
An automatic act-topic annotation parser must be made in order to achieve full automa-
tion.

Note that our approach only considers structure. For instance, the correctness of
summarising feedback is not considered.

References

[Aust et al. 1995] Harald Aust, Martin Oerder, Frank Seide, and Volker Stenbiss: The
Philips Automatic Train Timetable Information System. Speech Communication, 17,
249-262, 1995.

[Bernsen et al. 1998] Niels Ole Bernsen, Hans Dybkjær and Laila Dybkjær: Designing Interac-
tive Speech Systems. From First Ideas to User Testing. Springer Verlag 1998.

[Dybkjær and Dybkjær 2004] Hans Dybkjær and Laila Dybkjær: Modeling Complex Spoken
Dialog. Computer, IEEE, August 2004, 32-40.

[Heeman et al. 1998] Peter A. Heeman, Donna Byron, and James F. Allen: Identifying Discourse
Markers in Spoken Dialog. AAAI Spring Symposium on Applying Machine Learning and Dis-
course Processing, Stanford, March 1998.

[Jurafsky et al. 1997] Daniel Jurafsky, Rebecca Bates, Noah Coccaro, Rachel Martin, Marie
Meteer, Klaus Ries, Elizabeth Shriberg, Andreas Stolcke, Paul Taylor, and Carol van Ess-
Dykema: Automatic Detection of Discourse Structure for Speech Recognition and Under-
standing. Proc. of IEEE Workshop on Speech Recognition and Understanding, 1997, 88-95.

[Mann and Thompson 1987] William C. Mann and Sandra A. Thompson: Rhetorical Structure
Theory: Description and Construction of Text Structures. In Gerard Kempen (ed.): Natural
Language Generation. New results in artificial intelligence, psychology and linguistics.
NATO ASI series E 135, Chapter 7. The Netherlands, Martinus Nijhoff Publishers, 1987.

Appendix A Example rules

rule segment
 _y: .any {T_a}
 <-
 _x: .any {T_a}
 _y: .any {T_a}
end rule

rule select0
 _y: .select {T_a}
 <-
 _x: .inform {T_a}
 _y: .accept {}
end rule

rule select1
 _y: .select {T_a}
 <-
 _x: .inform {T_a}
 _y: .accept {}
 where
 _x != y
end rule

rule select2
 _y: .select {T_b}
 <-
 _x: .inform Ts_a
 _y: .inform {T_b}
 where
 _x != y
 _b in _a
end rule

rule select2a
 _y: .select {T_c}
 <-
 _x: .inform Ts_a
 _y: .inform Ts_b
 where
 _c in _a
 _c in _b
 _x != y
end rule

rule request
 _y: .request {T_b}
 <-
 _x: .inform Ts_a
 _y: .inform {T_b}
 where
 _x != y
 _b not-in _a
end rule

rule answer
 _y: .request {N_b}
 _x: .inform Vs_a
 <-
 _y: .inform {N_b}
 _x: .inform {V_b}
 where
 _x != _y
end rule

rule success1
 _y: .success {N_b}
 <-
 _x: .select {N_b}
 _y: .inform Vs_a
 where
 _b in Vs_a
 _x != _y
end rule

rule success2
 _y: .success {N_b}
 <-
 _x: .request {N_b}
 _y: .inform Vs_a
 where
 _b in Vs_a
 _x != _y
end rule

rule request2
 _y: .request {V_b}
 <-
 _x: .inform Ts_a
 _y: .inform {V_b}
 where
 _x != y
 _b not-in _a
end rule

from-place < place
rule selectSub1
 _y: .select {N_a}
 <-
 _x: .inform {N_a}
 _y: .inform {T_b}
 where
 _a < _b
 _x != _y
end rule

rule sequenceRequest
 _y: .request {T_a}
 <-
 _y: .request {T_b}
 _y: .request {T_b}
end rule

Rule reject3
 _u: .reject {V.toPlace,
 V.fromPlace,
 V.departureTime}
 <-
 _s: .inform {V.toPlace,
 V.fromPlace,
 V.departureTime}
 _u: .reject
end rule

rule successSummary
 _y: .success {N.travel}
 <-
 _u: .success {V.departureTime}
 _u: .success {V.fromPlace}
 _u: .success {V.toPlace}
 _s: .inform {V.toPlace,
 V.fromPlace,
 V.departureTime}
end rule

	1 Introduction
	2 Dialogues, turns, and moves
	3 Dialogue structure via rewrite rules
	4 Analysing dialogue phenomena
	5 Conclusion
	Appendix A Example rules

