
First Prototype of Conversational H.C. Andersen
Niels Ole Bernsen, Marcela Charfuelàn, Andrea Corradini, Laila Dybkjær, Thomas Hansen,

Svend Kiilerich, Mykola Kolodnytsky, Dmytro Kupkin and Manish Mehta
NISLab, University of Southern Denmark, Campusvej 55, 5230 Odense M, +45 65 50 35 51

{nob, marcela, andrea, laila, thomas, kiil, mykola, dima, manish}@nis.sdu.dk

ABSTRACT
This paper describes the implemented first prototype of a domain-
oriented, conversational edutainment system which allows users to
interact via speech and 2D gesture input with life-like animated
fairy-tale author Hans Christian Andersen.

Categories and Subject Descriptors
H5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – animations, virtual realities, audio
input/output. H5.2 [Information Interfaces and Presentation]:
User Interfaces – natural language, voice I/O, interaction styles,
input devices and strategies.

General Terms
Documentation, Performance, Design, Human Factors.

Keywords
Domain-oriented spoken conversation, life-like animated agents.

1. INTRODUCTION
This paper presents work carried out in the European NICE
project (2002-2005) on Natural Interactive Communication for
Edutainment [7]. The main goal of the project is to demonstrate
natural human-system interaction, in particular involving children
and adolescents, by developing natural, fun and experientially rich
communication between humans and embodied historical and
literary characters, including H. C. Andersen and some of his fairy
tale characters. We describe the implemented first prototype (PT1)
of the NICE Hans Christian Andersen (HCA) system in which we
aim to demonstrate domain-oriented conversation, including 2D
gesture input, with life-like animated fairy-tale author HCA. The
work on his fairy tale characters is not addressed.
By contrast with task-oriented spoken dialogue [2], domain-orien-
ted conversation has no task constraints. The user can address, in
any order, any topic within HCA’s knowledge domains, using
spontaneous speech and mixed-initiative dialogue. In PT1, the
domains are: HCA’s fairy tales, his life, his physical presence in
his study, the user, and his role as “gate-keeper” for access to the
fairy tale world. In addition, HCA has a ‘meta’ domain in order to
be able to handle meta-communication during conversation.

HCA reacts emotionally to the user’s input, e.g. by getting angry
or sad or becoming happy if the user likes to talk about his fairy
tales. The NICE HCA system is not an information system. It
attains its educational goal by providing correct factual infor-
mation, visually and orally. An equally important goal is to enter-
tain through conversation, to make the target users of 10-18 years
old kids and teenagers pleased to meet someone of, and from, a
different age who is much more like themselves than expected.

Below, we present the HCA system architecture, focusing on
general architecture and information flow, and NISLab’s natural
language understanding, character modelling, and response
generation modules. The system works in real time on a state-of-
the-art PC and will be tested with target users in early 2004.

2. GENERAL ARCHITECTURE
The system’s event driven, modular, asynchronous architecture is
shown in Figure 1. In addition to the modules explained in more
detail below, the modules are: a speech recogniser from partner
Scansoft [12] (not used in PT1); a gesture recogniser based on the
free OCHRE neural networks Java software [8]; gesture interpre-
tation developed by partner LIMSI [5]; RealSpeak speech
synthesis from Scansoft [10], including time calculation for
animation tags; and character animation and virtual world
simulation from partner Liquid Media [6]. The modules commu-
nicate via a central message broker, publicly available from KTH
[4]. The broker is a server that routes function calls, results and
error codes between modules. The Transmission Control Protocol
(TCP) is used for communication. The broker coordinates input
and output events by time-stamping all messages from the
modules as well as associating them to a certain dialogue turn.
The behaviour of the broker is controlled by a set of message-
passing rules, specifying how to react when receiving a message
of a certain type from one of the modules.

Figure 1. General NICE HCA system architecture.

Gesture
recognition

Natural language
understanding

Speech
recognition

Animation Speech
synthesis

Gesture
interpreter Input fusion

Character
module

Response
generation

Message broker

Partner TeliaSonera [13] is developing natural language under-
standing, character modelling, and response generation modules
for the fairy tale part of the system which otherwise draws on the
components already mentioned. In the second prototype, the user
will be able to go from HCA´s study to the fairytale world and

interact with some of the characters from HCA’s fairytales. In
PT1, the two worlds remain separate.
In terms of information flow, the speech recogniser sends an n-
best set of hypotheses (only in PT) to natural language understan-
ding which sends a 1-best hypothesis to input fusion. Similarly,
the gesture recogniser sends an n-best hypothesis set to the gesture
interpreter which consults the animation module as to which
object the user may have indicated. In PT1, the input fusion
module simply forwards an n-best list of pairs of (recognised
pointable object + gesture confidence score) from the gesture inter
and/or a 1-best natural language understanding output to the
character module which takes care of input fusion, when required.
The character module sends a coordinated verbal/non-verbal
output specification to the response generator which splits the
output into synchronised text-to-speech and animation.

3. LANGUAGE UNDERSTANDING
NISLab’s natural language understanding (NLU) module (Figure
2) is implemented in C++. It receives input from the speech
recogniser (SR) and passes its output to input fusion (IF). The
main recipient of NLU output is the character module (CM) via
input fusion. The NLU output provides the CM with the necessary
information to find an answer to the user input and plan HCA’s
next conversational move, cf. Section 4. The NLU has been de-
signed to robustly handle the ungrammatical and only partially
parsable user utterances characteristic of domain-oriented conver-
sation. The components of the NLU are: a keyphrase spotter, a
syntactic analyser, a domain/topic spotter and an FSA (Finite
State Automaton) processor. The combination of keyphrase
spotter and syntactic analyser acts as a shallow parsing component
and the FSA processor as the deepest level of parsing. The NLU
module manager manages internal NLU communication.

Figure 2. NICE HCA natural language understanding module.

Speech
recognition

Natural language
understanding

manager Domain/
topic spotter

Keyphrase
spotter

Syntactic
analyser

Input fusion

FSA
processor

The keyphrase spotter is the first NLU component. It has a set of
keyphrases that map to syntactic/semantic categories. A
semantic/syntactic category is an attribute-value pair. For
instance, the semantic category <fairytale:ugly_duckling> has an
attribute fairytale with ugly_duckling as its current value. An
attribute can have multiple values. Thus, in the case of attribute
fairytale, the values can be ugly_duckling, little_mermaid and
princess_pea. The keyphrase spotter spots phrases in the user´s
input and converts them into syntactic/semantic categories. A
phrase example could be “I did not say...” which is mapped to the
semantic category <meta:correction>. The output is passed on to
the syntactic analyser.
The syntactic analyser consists of a number spotter, a lexicon, and
a rule engine. The number spotter spots numbers in the input,
indicating, e.g., the user’s age. The lexicon entries consist of syn-
tactic/semantic categories for individual words. Having passed the
number spotter and the lexicon, the user input is a sequence of
semantic and syntactic categories. The rule engine applies rules to

this input sequence. The rules are defined based on the presence of
certain semantic/syntactic categories at specific positions in the
input sequence. The rules consist of a semantic/syntactic category
sequence to be detected in the input sequence and a resulting
semantic/syntactic category sequence that replaces it (see example
below). The conversion depends on the presence or absence of
conditions. A condition consists of the presence or absence of
semantic/syntactic categories in a specific position.
The domain/topic spotter identifies the input topic(s) by mapping
the semantic/syntactic categories to their respective topics. This
mapping is defined at design time. Domains are identified based
on topics. The result is sent to the FSA processor.
If the sequence is able to traverse an FSA, the result corres-
ponding to the FSA is the NLU output semantics. An FSA compi-
ler is used to develop the FSAs off-line from a training corpus.
The utterances in the training corpus go through keyphrase and
syntactic analysis to produce a syntactic/semantic category se-
quence. The sequence is used to form the FSAs. A sequence of
semantic categories is defined for sets of FSAs at design time. The
FSA processor reads these FSAs at system initialisation time. The
values for the attributes in the resulting sequence are filled from
the input user sequence. The result consisting of domain(s),
topic(s) and semantics is sent to the input fusion module.
To illustrate NLU processing, consider the user utterance “I am
ten years old”. The keyphrase spotter does not change the utter-
ance as it does not spot any keyphrases. The number spotter spots
the number ten and the processed sequence is “I am <number:10>
years old”. The categories for individual words are taken from the
lexicon, making the sequence: “<User><aux:am><number:10>
<years><old>”. The rule engine converts <User><aux:am>
<number:10> to “<User_Info:age><number:10><years><old>”.
The Domain/Topic Spotter finds that only the semantic category
<User_Info:age> has a mapping and is mapped to the topic
“u_information”. The domain “user” is identified from the topic.
The FSA processor result is “<User_Info:age><number:10>”. The
resulting information on domain, topic and semantics is wrapped
in XML and sent to the input fusion module.

4. CHARACTER MODULE
The HCA character module (Figure 3) is implemented in C++. It
is managed by the character module manager which also takes
care of module-external communication. The character module is
in one of three output states, producing either: non-communicative
action output, communicative function output, or communicative
action. Non-communicative action (NCA) output is produced
when nobody is talking to HCA. In this state, he is simply going
about his work in his study. Communicative function (CF) output
is produced when someone is talking and/or gesturing to HCA, to
which he responds by showing friendly awareness of the user’s
input. For this to happen in real time, the character module has
fast-track connections to the speech and gesture recognisers in
order to act as soon as one of them receives input. Communicative
action (CA) output is HCA’s conversational contributions. The
overall state relationships are: NCA → CF ↔ CA → NCA. Thus,
NCA, the system’s “resting state”, must be followed by a CF state
in which a new user starts addressing HCA. Following the user’s
first input, conversation in which user and system take turns may
go on for a while, eventually being followed by the NCA state.

When a conversation with a user is ongoing, the character module
manager (CMM) sends the input received from input fusion, i.e., a
frame wrapped in XML, to the mind state agent manager (MSAM)
of the mind state agent (MSA), cf. Figure 3. The MSA manages
the user’s spoken and/or gesture input, including the planning of
which response to produce in reaction to the input.

Figure 3. HCA character module architecture.

Gesture
Rec.

Response
Gen.

HCA Character Module (CM)

CM
Manager

Conv.
History

Comm. Functions

Non-Comm. Action

Knowledge
Base

Mind State Agent (MSA)

MSA
Manager

DA
 Life

DA
Works

DA
Presence

DA
Gate-keep

DA
 User

DA
 Meta

Input
Fusion

Speech
Rec.

Emotion
Calculator

MD
Processor

User
Model

Conv. Intention
Planner

The MSAM is the central component in the mind state agent. Ba-
sed on input and proposals from the conversation intention planner
(CIP) which embodies HCA’s conversational agenda, the MSAM
communicates with the domain agents (DAs) to retrieve output.
The default option is that HCA should, if possible, provide an in-
domain response to the user’s input. However, the CIP may decide
that this should not be attempted because, e.g., the input was not
understood and meta-communication should be initiated. The
conversation intention planner will always propose a way in
which to continue the dialogue, which may or may not relate to
the topic and/or domain brought up by the user. The MSAM
decides whether or not to use the proposed continuation. If the
CIP has indicated that no attempt should be made to find a reply
to the user’s input, the MSAM will always use the continuation.
Otherwise, the MSAM will try to retrieve a reply by contacting
the DAs. If an empty reply is returned by the DAs, the con-
tinuation will always be used. If the retrieved reply was non-
empty, the MSAM will, in most cases, randomly decide whether
or not to use the continuation. A continuation may be a reference
to a statement, a question, or a mini-dialogue (see below) which is
retrieved from the DAs. The result will always be non-empty. This
means that HCA will always say something, either in terms of a
reply, a continuation, or both.
The MSAM may contact the DAs in three different ways. The two
first ways mentioned below are used for retrieving a reply to user
input and for retrieving a continuation, respectively, except when
the domain is meta. In the meta case, Option 3 is used.
1. Function get reply takes as input a frame containing the

user’s input and HCA’s emotional state. The return may be
an output reference obtained from the knowledge base (KB)
or null in case there is no reply in the KB for the user input.

2. Function get continuation takes as input a frame which,
among other things, indicates the type of continuation, i.e.
statement, question, or mini-dialogue. In case of a mini-
dialogue, the function updates a variable in the conversation
history (CH) about whether the mini-dialogue is starting,

ongoing or ending. The return from the function will always
be an output reference retrieved from the KB.

3. In case of meta, a function with a parameter action is used to
indicate the particular meta case to be handled, e.g., repeat.
The return will always be KB-retrieved output reference.

Internally, in the DAs component, the MSAM’s request is directed
to the relevant domain agent (Figure 3). For replies, the KB is
always contacted directly by the DAs via an SQL query. For con-
tinuations, the KB is contacted directly in a similar way unless the
proposed output is a mini-dialogue. A mini-dialogue is a predefi-
ned small dialogue that will allow HCA, on occasions at which he
takes particular interest in the user’s input, to carry out in-depth
conversation on (a) certain topic(s). In case of a mini-dialogue, the
DAs first contact the mini-dialogue processor (see below).
The user domain agent has the particular task of extracting from
the frame received from the MSAM data related to a particular
user, such as nationality, gender and age. This information is
stored in the user model. The knowledge about age is used when
selecting output in certain cases.
The mini-dialogue processor (MDP) processes mini-dialogues in a
finite-state-machine approach. The MDP has two functions which
may be called by the DAs. One is called only when a mini-dia-
logue starts. The second function is called at all other steps in an
ongoing mini-dialogue. The latter function tells when the mini-
dialogue ends. Both functions return an internal identifier retrie-
ved from the KB. The identifier is used by the DAs to look up the
relevant output references in the knowledge base.
The KB is implemented as an Access database which maintains
the system’s domains ontology, including references to all of
HCA’s coordinated spoken and non-verbal output.
Output references retrieved by the DAs from the KB are sent to
the mind state agent manager which collects the returns from the
DA function(s) called before sending the output for that turn to
response generation via the character module manager.
A conversation history (CH), is maintained to keep track of infor-
mation about the individual input and output turns in the conver-
sation, such as the last domain and topic to which a response was
looked up, the most recent domain and topic of a retrieved contin-
uation, number of consecutive turns involving meta-commu-
nication, and mini-dialogue status (started, ongoing, ended). A
second conversation record is maintained in a tree-structure by the
conversation intention planner. This record keeps track of the
domains and topics talked about so far, the topics and output
already used, and the domains covered during conversation. HCA
likes to talk to the user for a while before letting him/her into the
fairy tale world. Thus, for each domain he wants a minimum
number of exchanges before the domain is declared covered. Once
a domain is covered, HCA will not return to it during the dialogue
unless it is re-introduced by the user. The reason for keeping track
of what has been said is to prevent HCA from repeating himself
during conversation. Thus, replies to the user’s input are repeated
only if the user provides the same input several times.
The emotion calculator (EC) updates HCA’s emotional state
whenever the user’s input produces an emotion increment which
makes HCA more happy, sad, or angry. Emotion increments are
attached to output references stored in the knowledge base. When-
ever the domain agents query the KB, it is checked if there is an
emotion increment. If there is, the EC is called and returns an

updated emotional state. Since, in some cases, the exact phrasing
of output depends on HCA’s current emotional state, the KB is
then queried again with the new emotional state.

5. RESPONSE GENERATION AND
ANIMATION
Giving HCA a richer persona through emotion and personality
modelling is not sufficient to create a life-like character [1,3]. To
increase character believability, it also has to be able to display
human-like behaviour by combining non-verbal (gesture, facial
expression, pose, gaze) and verbal (speech) output during conver-
sation. The response generator links emotional patterns and
character animation in terms of speech as well as gesture [9].
The response generator must perform in real-time and must gene-
rate a comprehensive set of communicative and non-communic-
ative actions, which can be rendered via speech synthesis and by
the animation component. NISLab’s response generator is
implemented in C++ and Sicstus Prolog [11].

Figure 4. Uttering ‘I would like to hear your opinion about the
Prince’ while performing a deictic gesture co-occurring with
the word ‘your’ in the text template and after insertion of the
word ‘the Prince’ in its variable value FAIRY_TALE_CHAR.

The response generator receives a parameterised semantic instruc-
tion composed of input values, text-to-speech (TTS) references,
and/or references to non-verbal behaviours. The TTS references
are used to retrieve text template output with embedded start and
end tags for non-verbal behaviours (bookmarks) that are stored in
the form ’I would like to hear [g0] your [/g0] opinion about
{FAIRY_TALE_CHAR}’. In this example, elements within brack-
ets starting with numbered ‘g’ letters represent behavioural parts
of the template. Elements within parentheses, like FAIRY_TALE_-
CHAR in the example, represent variable values to be filled using
contextual information delivered by the NLU during a conversa-
tional turn; ‘the Prince’ or ‘the Little Mermaid’ are two possible
values associated to the fairy tales (representing contextual infor-
mation) ‘The Princess and the Pea’ or ‘The Little Mermaid’, res-
pectively. Both behavioural elements and variable values are
initially uninstantiated and need to be retrieved at run-time. This
approach allows for a high degree of flexibility as the binding of
non-verbal behaviour to speech occurs at run-time rather than
being hard-coded, enabling a sentence to be synthesised at differ-
ent times with different accompanying gestures.
In order to provide timing information for speech and gesture
during rendering, behavioural elements are made up of two sets of
tags to indicate their start and end, respectively. Thus, in the
previous example, tags [g0] and [/g0] indicate that a single

movement has to co-occur while uttering the spoken text ‘your’
around which they are wrapped. A pointing gesture may be
attached to the gestural behaviour [g0] while uttering the short
text. Figure 4 shows a snapshot of the animation generated with
the text template in the example.
Once non-verbal-behaviour tags have been processed and variable
values inserted into the templates, a surface language string re-
sults. The string is sent to the speech synthesiser which syn-
thesises the verbal output and, when it meets a bookmark, sends a
message to the response generator. The response generator creates
an XML representation of the non-verbal element and sends it to
the animation engine which takes care of the graphics output. The
first NICE HCA prototype uses approximately 300 spoken
utterance types and 100 different non-verbal behaviour primitives.
To animate the three-dimensional HCA character, we change its
position, scale and orientation at different points in time. The
animation system uses three scalar values to represent position
and scale, and quaternion values to represent orientation. The
character is built upon a hierarchy of elementary parts, referred to
as frames, where each single frame represents a bone in the char-
acter. The hierarchy of frames together with a textured polygon
mesh and skin-weight information is represented as a mesh with
skin. The skin information specifies the influence a frame has on
its mesh. The root frame contains a transformation matrix relative
to the world space. An animation that affects the root node affects
the whole scene while an animation that affects a leaf node does
not affect any other node. Hence, the frame hierarchy gives the
system the ability of playing single animations in parallel for
different parts of the body to obtain complex animations.

6. ACKNOWLEDGMENTS
The work presented is being supported by the EU Human
Language Technologies programme under contract IST-2001-
35293. We gratefully acknowledge the support.

7. REFERENCES
[1] Argyle M.: Bodily Communication. 2nd edition, London and

New York: Methuen & Co., 1986.
[2] Bernsen, N.O., Dybkjær, H. and Dybkjær, L.: Designing

Interactive Speech Systems. From First Ideas to User
Testing. London: Springer Verlag, 1998.

[3] Knapp, M.L.: Non-verbal Communication in Human
Interaction. 2nd edition, New York: Holt, Rinehart and
Winston Inc., 1978.

[4] http://www.speech.kth.se/broker
[5] http://www.limsi.fr/indexgb.html
[6] http://www.liquid.se/
[7] http://www.niceproject.com/
[8] http://sund.de/netze/applets/BPN/bpn2/ochre.html
[9] Picard, R.: Affective Computing. Cambridge, Mass.: MIT

Press, 1997.
[10] http://www.scansoft.com/realspeak/
[11] http://www.sics.se/sicstus/
[12] http://www.scansoft.com
[13] http://www.teliasonera.se/

	INTRODUCTION
	GENERAL ARCHITECTURE
	LANGUAGE UNDERSTANDING
	CHARACTER MODULE
	RESPONSE GENERATION AND ANIMATION
	ACKNOWLEDGMENTS
	REFERENCES

