OMPUTING PRACTICE

Modeling Complex
Spoken Dialog

Increasing task complexity is
challenging the models that
underlic spoken dialog systems.
Al customized dialog language,
evolved from building an actua
system, uses core patterns that
modelers can adapt to most

applications.

Hans Ithough not as complex as their
Dybkjcer research counterparts, commercial
Prolog spoken dialog systems (SDSs) can han-
Development dle increasingly advanced tasks. This
Center relatively new complexity poses three

immediate development challenges. The first is how
Laila to model the dialog when the user can select from
Dybkjcer many tasks. How can the system present the avail-
NISLab, able choices and anticipate what the user will talk
University of about next?
Southern The second challenge is how to communicate
Denmark

Computer

with customers about SDS design. When the sys-
tem is fairly simple, developers can easily learn how
to handle the domain to be covered and have rela-
tively little need to communicate with domain
experts. When the domain is large and complex,
however, developers are less likely to understand its
nuances and thus must collaborate more closely
with those who do. Thus, choosing the best com-
munication method becomes another development
task—a concern SDS developers have not had to
deal with traditionally.

The final challenge is how to develop code effi-
ciently for a large SDS when the design is likely to
require updates throughout development. A com-
plex application domain poses many language and
flow problems, as the “Dealing with Complexity”
sidebar describes.

We had to meet all these challenges in our effort
to develop a commercial phone-based SDS that sup-
plies information to employees about their holiday
allowance. Key to this frequently-asked-questions
(FAQ) system was our use of the Conceptual Dialog

Published by the IEEE Computer Society

Language (CDL), a customized language that lets
us express patterns specific to the system’s dialog
model while still providing a clear picture of the
dialog model to domain experts and supporting
model updates. CDLs power stems from its ability
to capture the specifics of an SDS application while
remaining flexible enough to support a range of
modeling styles and requirements. To facilitate
effective communication with domain experts,
modelers can translate the dialog model in CDL to
an HTML document, or they can compile it to a
programming language for executable code.

FAQ SYSTEM

From September 2001 to December 2002, Prolog
Development Center and NISLab developed a FAQ
SDS that supplies holiday-allowance information
on behalf of FerieKonto (www.ferie
konto.dk), an institution that administers holiday
allowances to Danish employees.!

As the right side of Figure 1 shows, the system is
a phone-based SDS that uses the High-Level Dialog
Description Language (HDDL)?and runs on Scan-
Soft’s SpeechMania platform (www.scansoft.com).
HDDL, a grammar and dialog description language
that Philips developed in 1994, describes dialog in
automatic inquiry systems that involve speech recog-
nition. SpeechMania, a platform Philips developed
and then sold to Scansoft, includes components for
speech recognition, dialog and lexicon management,
language modeling, and speech output. The pack-
age runs on a Windows PC with a telephone inter-
face board.

0018-9162/04/$20.00 © 2004 IEEE

Dealing with Complexity

A well-known software-engineering challenge is
how to deal with modeling complexity. Most prac-
titioners use a divide-and-conquer strategy based
on object orientation and other encapsulation.
Others use communication abstractions in the form
of patterns.

Spoken dialog system developers have similar
solutions. Some have observed that concrete tasks,
such as obtaining a date or a zip code, are common
enough to be candidates for reuse as standard
library subdialogs.! Commercial products like
SpeechMania use similar ideas. The subdialogs
encapsulate well-proven behaviors as long as the
structured subdialog remains simple.

Unfortunately, a subdialog typically requires
complex division into parameters, which is prob-
lematic because the subdialog is highly context sen-
sitive. In Figure A, for example, the task is to turn
“get a date value” into a subdialog and then call it
twice to obtain a time interval. The subdialog would
require at least three parameters: prompt, input
grammar, and input interpretation. This is apart
from the added problem of dialog flow.

At every user input, several error situations
should give rise to different continuations.
Including this as a parameter is difficult, but leav-
ing it at the calling place could greatly increase its
complexity.

Language

A common approach has been to divide gram-
mars into subgrammars that correspond to subtasks
and have active only the grammars that correspond
to the tasks in focus. The drawback is that users and
designers never work with the same division of the
world. Some have attempted to add keywords to
the active grammars to trigger tasks outside the
focus. However, because speech recognizers become
better, the trend is to have all grammars active all the
time. Researchers are currently investigating how
to combine subgrammars.?

Information users need

In Denmark, all full-time employees have at least
five weeks of vacation or holiday per year, but only
those who have remained full-time workers the pre-
vious year can receive a salary during their vaca-
tion or holiday. Each month, employers contribute
12.5 percent of an employee’s salary to FerieKonto,
which saves it as holiday allowance to pay for that

[Assume that today is Monday.]

S1.1: When do you leave?

Ul.1l Friday. [The user means the
first Friday after today]

S1.2: Leaving Friday, when do you
return?

Ul.2: Wednesday. [The user means
the first Wednesday after Friday, not the
first Wednesday after today.]

Figure A. Example of how semantics depend on
context, both on the immediate prompt and on the
wider discourse and world state. Bracketed text is
analysis, not dialog.

Flow

As Figure A shows, a period—in this case the time
between Friday and Wednesday—is not simply a
combination of two date subdialogs, even if you view
the prompt text as a parameter. A full object model
would require at least two dates (today, and a rela-
tive date), and the model still does not account for
repair (what if the user had responded in U1.2 “No,
Thursday,” as a correction to “Friday”?). Clearly,
using objects requires some level of sophistication.

Flow patterns are also important. Natural dialog
tends to follow standard patterns that dialog man-
agement should support, not least to ensure that the
system behaves uniformly so that the user can eas-
ily recognize what is going on.

References

1. D.G. Novick and S. Sutton, “Building on Experience:
Managing Spoken Interaction through Library Sub-
dialogues,” Proc. 11th Twente Workshop on Lan-
guage Technology (TWLT 11), S. Luperfoy, A.
Nijholt, and G. Veldhuijzen, eds., University of
Twente, 1996, pp. 51-60.

2. M. Rayner et al., “Plug and Play Speech Understand-
ing,” Proc. 2nd SIGdial Workshop Discourse and
Dialogue,]. van Kuppevelt and Ronnie Smith, eds.,
2001; www.sigdial.org/workshops/.

person’s vacation the next year. Employees who
continue in a permanent position receive their usual
salary during holidays, and FerieKonto reimburses
their employer. Employees who change to another
position or have a temporary position, however,
must fill in a holiday allowance certificate and sub-
mit it to FerieKonto. They then receive their saved
holiday allowance instead of a salary.

August 2004

Developer

Compile
I—> HDDL program
A
I ‘ Speech IVR
A
PBX
Phone

User

Domain
expert

Figure 1. FAQ spoken dialog system (SDS) architecture. Danish employees call
the SDS to get information about their holiday allowance. During system design,
developers manipulated a CDL model, which they can translate to HTML for
communication with demain experts or compile to a dialog program in HDDL,
which the speech interactive voice response (IVR) then interprets through the
switchboard (PBX).

=]

System 13.2 - Do you want information about payment of
"small amounts” or "error in amount"?
- PAUSE1000

User 13.1 error in amount

Recognised (error in amount)

Concepts (amount /score 736, error/score 771)

System 14.1 - Please remember that tax and labor market
payments have been deducted from your holiday
allowance before it is paid to us.

- If you think the amount is wrong, please
contact your employer.

- Also contact your employer if a payment is
totally missing.

- If you think you have received a wrong amount,
please call again and talk to a case officer.

- Do you want information about "payment of
small amounts," "problems with the employer," or
to get a "phone number"?

- PAUSE1000

User 14.1 get a phone number

Recognised (got phone number)

Concepts (phone/score 1000)

System 14.2

System 14.3

System 15.1 - Our phone number is: 48 20 49 10

System 15.2 - You may also say "address," "email," "fax,"
and "web, "
— PAUSE1000

Event 10 hangup

Figure 2. Dialog fragment, translated from Danish. System pauses are in
milliseconds. After each user utterance, the system records what it recognized
and to what degree using a recognition score of 0 to 1000. The score represents
the strength of a match to certain concepts that the developer specifies.

Because the rules governing holiday allowance
earning and distribution are complicated, many peo-
ple need information about it, and the FAQ SDS
must model all possible concerns. Questions to
FerieKonto can relate to a specific person, such as,
“How much money (or how many days) do I have

Computer

in my account?” The questions might also be more
general, such as, “Is Saturday considered a holiday?”
or “Can I transfer a holiday allowance to next year?”

Although the FAQ SDS recognizes personal ques-
tions, it deals strictly with nonpersonal questions,
referring other inquiries to an operator or a Web
page. Figure 2 illustrates the kind of dialog a per-
son can have with the system. Typically, callers fall
into some combination of four categories:

* They have a problem and want an answer to
their question now.

* They don’t know exactly how to describe their
problem.

e They lack information about the holiday
allowance domain in particular.

* They’ve never interacted with an SDS before.

Dialog model design

Because the holiday-allowance domain is large
and complex, we knew that the dialog model design
would be a central issue in developing the FAQ SDS.
Consequently, we devoted much effort to structur-
ing the large information space and presenting it to
the user, as well as to designing the user introduc-
tion, which had to convey both the system’s capa-
bilities and how users could get information.

Although design issues for standard SDSs are
fairly well understood from both general and con-
crete perspectives,* the FAQ SDS is far from a stan-
dard commercial system. The most obvious
difference is that it covers a large domain compris-
ing many tasks, any one of which might be in focus
at a given time. It is thus impossible to know in
advance which part of the system knowledge a spe-
cific user will find relevant. These numerous tasks
naturally give rise to many domain concepts.

As the “Choosing the Right Dialog Model” side-
bar describes, application domain and user ability
largely determine the selection of dialog model or
combination of models. The application can have
a range of tasks, concepts, and values, and that
range is part of what determines the most appro-
priate model. The FAQ SDS, for example, has many
tasks and many concepts, but each concept has few
values, and the users are primarily novices.

For the FAQ SDS dialog model design, our
options were to use a natural language model or a
combination of the menu and natural language
models. A menu model alone would have been
infeasible because the FAQ SDS domain has too
many concepts.

Using the natural language model,’ which in
essence invites people to speak their minds after the

system asks, “How may I help you?” was tempt-
ing, but we decided against it because users have
only a limited understanding of what an SDS can
do. Moreover, user tests during development indi-
cated that giving the user too much freedom to ini-
tiate dialog was not compatible with how a FAQ
system should work.

We confirmed these results later when we ana-
lyzed dialogs from the production system. Most
users expected the FAQ SDS to guide them through
the dialog. A few users took the initiative, using
their own formulations to try to obtain answers.

Story: Amount, Error
- error in amount

r04_04 Amount, Error

- Please remember that tax and labor market payments have been
deducted from your holiday allowance before it is paid to us.

- If you think the amount is wrong, please contact your employer.
- Also contact your employer if a payment is totally missing.

r07_14 Payment, Error

- If you think you have received a wrong amount, please call again
and talk to a case officer.

Qo: Offer - Do you want information about ”payment of small
amounts, ” "problems with the employer,” or to get a
"phone number”?

Small=Amount+Small | Amount=Amount+Small |
Problems=Problems+Employer |

Employer=Problems+Employer

Repeat=Amount+Error | Silence=Q: Instruction | (global)

Figure 3. HTML rendering of the dialog model. The links refer to approximately
correct states. Fully correct transitions depend on dynamic information and need
an interpreter. Overall, however, the HTML approximation is much simpler to read

Still others seemed to ignore that they were speak-
ing to a computer and provided too many details of

the events leading to their current situation. Many
users probably expected to speak to a human, so
when they found themselves connected to a com-
puter, they either hung up or did not speak but lis-
tened to the system’s introduction, perhaps to
extract some general information.

These results convinced us that too many users
wouldn’t know what to do, and only a few would
take the initiative to use natural language and be
able to focus their queries at the right detail level.

We ultimately decided to use a combination of
menus and natural language to target the largest
user group—people who didn’t know how to
describe the problem but needed an answer—and
still accommodate the second group—people with
direct questions about their holiday allowance. The
menu points cover only the most frequently asked
questions and serve as examples of what the sys-
tem covers and how the user should ask questions.

CUSTOMER COMMUNICATIONS

Like any system, an SDS requires software engi-
neering. As such, communication with the cus-
tomer and domain expert is an important concern.
For SDS development, the amount of required com-
munication can differ considerably, depending on
the system’s size and complexity.

Previously, the target user group got information
from a simple voice-response system, a Web site,
or a case officer, whom they must call during office
hours. Consequently, FerieKonto and its domain
experts had been using diagrams as dialog models.

For a small system, diagrams are useful in show-
ing prompts and dialog flow, and they provide an
adequate overview for nondevelopers. For a large,
complex system like the FAQ SDS, however, dia-
grams do not work as well.

First, the domain experts must easily understand
the dialog structure and be able to provide feed-
back on the correctness and appropriateness of

and explain to domain experts. A list of specialized links precedes the set of
globally defined links.

holiday-allowance rule formulations and combi-
nations. To allow detailed feedback, the domain
experts should be able to move around in the dia-
log model in a way that corresponds to what the
implemented system would allow and to see all
output, including rules. Second, the model pre-
sentation must be easy to update, since changes to
the system must be consistent with what nonde-
velopers see.

We found that representing the dialog model as
an HTML document, an excerpt of which is shown
in Figure 3, satisfied both these requirements. The
HTML links let domain experts follow the essen-
tial dialog flow; dialog content remains clearly vis-
ible; and with support from CDL, experts can
easily update the HTML model.

CONCEPTUAL DIALOG LANGUAGE

A key concern was how to create efficient code
that would capture the large, complex domain in
which the FAQ SDS had to operate. The dialog
model and the grammar would likely require sev-
eral iterations, and the evolving specification had to
be consistent with the envisioned implementation.
These constraints were our primary motivation for
creating CDL. Our aim was to tailor it to the FAQ
SDS and to base it on general notions so that mod-
elers of other SDSs could use it.

Figure 4 gives part of the dialog model in CDL
with an XML syntax. CDL represents input as con-
cepts and output as phrases concatenated into
prompts. The dialog structure is partly static, mod-
eled as collections of prompts or stories, and partly
dynamic, expressed through conditions and links
that control dialog flow. Using the XML syntax is
purely a matter of convenience. CDL’s combina-

August 2004

Choosing the Right Dialog Model

The most common dialog models for commercial
spoken dialog systems (SDSs) are command and con-
trol, menu, form-filling, and natural language—often
in combination. As Table A shows, the exact model
or combination of model elements depends on appli-
cation complexity and the user’s expertise with a par-
ticular SDS. Most current commercial SDSs belong
to one of the first four rows in the table. Systems in
the last two rows are still fairly rare.

Some researchers describe application complexity
primarily in terms of language, but we view it in
terms of tasks, concepts, and values. Language
becomes abstract using domain concepts (station,
departure and arrival times, and seat availability) that
are definable as elements of meaning that the system
needs to perform one or more tasks.

Linguistically, concepts correspond to subgram-
mars. A single task, such as obtaining information
about train travel, can have a few concepts, and those

concepts can have a few values (Is the seat available
or not?) or many values (station names, times).

User expertise in the particular SDS under devel-
opment seems to matter quite a bit. An expert user
can be familiar with the domain and at least one SDS
type, but even that user might have a hard time with
a different SDS type. The user of a command-and-
control system, for example, might use her back-
ground in the application domain and in using a
natural language SDS to guess some of the function-
ality and some of the command words. But without
knowing how this particular SDS works, she cannot
fully exploit it. Thus, as a rule, the more novice the
user, the more directive the dialog model.

Command and control

In this model, accepted system input is a set of pre-
defined words and phrases, and the user initiates the
interaction. Thus users must be familiar with the sys-

Application complexity

User’s domain and SDS expertise

Tasks Concepts Values Novice Expert Systems with these characteristics
One Few Few Menu Menu Collect calling
One Few Many Form filling Form filling +* Train information; airline ticket
reservation
Many Few Few Menu Command and control Simple car control, operating room
Many Few Many Menu, form filling Command and control, Car control with other features, such as
form filling + route planning
Many Many Few Menu, natural Menu +, natural Simple FAQ
language language
Many Many Many Menu, form filling, Menu +, form filling, Complex FAQ, with accounts and names,

natural language

natural language

for example

“w,n

*A “+” indicates the use of speak ahead, in which users can provide the needed information in the order they choose, rather than waiting

for the system to ask.

tion of abstraction and customizable compilations
is what makes it work, not the use of XML.

Concepts as an input abstraction

The immediate description of user input is a
grammar. Grammars are concrete and large—com-
plexity we handle using concepts. In the FAQ SDS
implementation, a concept is a semantic abstrac-
tion that HDDL maps to a concrete input grammar
fragment.

Modelers can typically indicate to the speech rec-
ognizer what input they expect at a given point in
the dialog by defining certain concepts to be active
at that point. Having a small set of active concepts
increases recognition quality, but only if the user
says something within the set. If the user says some-
thing outside the set, the recognizer will not recog-
nize it or will mistakenly view it as an active

Computer

concept. In the FAQ SDS, we decided that the user
will probably want to ask for everything at any
time, so we made all concepts active all the time.

The FAQ SDS comprises 75 domain-related con-
cepts, six user-provided metaconcepts—yes, no,
help, repeat, bye, and other options—and four sys-
tem-detected metaconcepts—barge-in, silence, too-
long input, and not-understood input.

Structure from prompts and stories

After analyzing the domain and reviewing early
drafts of the dialog structure, we identified four
overall prompt types:

* rule: formal regulation governing holiday
allowance;

* information: more details about holiday
allowance or dialog continuation;

tem before they can really control it. The more com-
mand words the system includes, the more difficult
it is to remember them all. Sample applications are
voice control of operating rooms, such as Stryker’s
Endosuite, and in-car systems, such as those in some
automobiles, in which drivers can control the CD
player, radio, navigation system, and so on with voice
commands.

Menu

In menu-driven systems, the user chooses from a
list of items. This model is well suited for users who
don’t know the task and aren’t familiar with the sys-
tem. The system dictates to the user exactly what he
can say, such as “Please say one of the following: pay
bills, account balance, or transfer funds.” Some sys-
tems offer skilled users the option of interrupting
menu prompts (barge-in).

Menus appear in interactive voice-response or
touch-tone systems and in their SDS equivalents. In
these systems, dialog is always based on menus.
Designers might also opt to use menus with other
models, say, to let a user select a task from a voice
portal. The selected task might then follow a form-
filling structure.

Form-filling

In this model, the system has slots that the user
must fill. A primitive form-filling model has only one
slot, requesting a yes or no answer or a waybill or
account number. More complex versions can require
several pieces of information, such as the departure
and arrival station and the arrival and departure
times and dates for train travel.

This type of system typically guides the dialog, and
the user needs no system or task knowledge. If the
system dialog is poorly crafted, however, the user

* question: clarification of user issues; and
* [ist: options that the user can choose from.

These prompts are in essence reusable core pat-
terns. Representing these patterns as a built-in syn-
tax—basic building blocks—ensures that modelers
can easily express them as needed and that the user
sees a consistent structure.

We supplemented core patterns with patterns for
specific situation types. A fixed repair pattern
addresses any miscommunication: The SDS offers
first instruction, then help, then the option of speak-
ing with a case officer, and finally, if all else fails,
politely closes the dialog. Another standard pattern
is that after it gives the information, the system
offers to provide more details related to that topic.

To allow for larger patterns and variations over
prompt combinations, we introduced the notion of

might not know exactly what to say and still have
the system understand.

To accommodate users familiar with the task, SDSs
using the form-filling approach often provide a
speak-ahead option, where users can provide the
needed information in the order they choose. In the
train-travel example, a user could provide the depar-
ture and arrival stations, dates, and times in the same
turn even if the system asked only for the departure
and arrival stations.

Natural language interfaces

Interfaces that accept free natural language do not
exist, but many systems allow limited natural lan-
guage input, which the designer specifies. This kind
of input fits well with the form-filling model because
free input formulation can be a natural user choice.
However, it is not a good fit with command-and-con-
trol systems, which are more restrictive.

Researchers are investigating conversational dialog
that is not task oriented, but their efforts have yet to
solve the problem of how to tell the user what the sys-
tem can and cannot understand. The vast majority of
changes to fine-tune a deployed system that allows
some kind of natural language involve expanding the
grammar. In the train example, the system must under-
stand many formulations: “When is the next connec-
tion between Munich and Frankfurt today?” and “I
need to be in Frankfurt at five pm tomorrow.”

When the application domain has too many con-
cepts, neither the menu nor the form-filling model is
viable. Using full natural language queries would be
optimal if SDS developers can overcome the limited
subset of natural language that current systems are
restricted to. This limitation might be acceptable for
experts, but novice system users will always need
help in determining what they can say and do.

stories. A story combines several prompts into a
larger structure. Figure 3, for example, is a partial
story about errors in the amount paid. Stories are
based on both rules and meta-issues, such as the
user asking for help or other options or the system
detecting silence or overly long input.

To compose stories, we used these informal
design rules:

* Each single domain concept must have an
associated story.

* If a concept concerns only one or two rules,
the system provides these rules to the user
immediately.

e If a concept concerns more than two rules, the
system provides the most general rule and
simultaneously indicates that more informa-
tion is available on that topic.

August 2004

Figure 4. Fragment
of the dialog model
in CDL, translated
from Danish. Coding
CDL in XML was
purely a matter of
convenience. The
power of CDL lies in
its ability to be at
once application-
specific and
extendable.

<story topics="amount error” implicit="error in amount”>

<ruleRef rule="r04_04"/>
<ruleRef rule="r07_14"/>
<prompt type="Q” subtype="0">

<phrase text="Do you want information about ’‘payment of small amounts, ’
'problems with the employer,’ or to get a ’‘phone number’?”/>

<links type="meta”>

<link ref="@story” cond=" (got again)”/>
<link ref="QhI” cond="silence”/>

</links>
<links type="topic”>

<link ref="amount_small” cond=" (got small)”/>
<link ref="amount_small” cond=" (got amount)”/>
<link ref="problems_employer” cond=" (got problems)”/>
<link ref="problems_employer” cond=" (got employer)”/>

</links>
</prompt>
[...]
</story>
[...]

<rule id="r07_14" topics="payment error”>

<phrase text="If you think you have received a wrong amount, please call again and talk

to a case officer.”/>
</rule>

¢ If no rule is the most general, the system asks
the user for more information.

e If related rules exist, the system offers them to
the user after providing the information about
the current story.

Flow via conditions and links

CDL captures the flow of prompts both within
and between stories through links and uses condi-
tions to control the flow of prompts. Every prompt
has a list of links to other assigned prompts. We
opted to have conditions on both links and stories
and prompts to have greater flexibility in modeling
style.

Link conditions are local in the sense that the sys-
tem knows which prompt the dialog is in and what
input it just received. Conditions on links enable a
state-machine or flow-chart style—a traditional
way to describe simple dialogs, such as those in
voice-response systems. Link conditions answer the
question, “Where should I go from here?”

Prompt and story conditions are global in that
they are independent of local context. Conditions
on stories and prompts enable a rule-based style
more akin to Al systems. Prompt conditions answer
the question, “Now that I’'m here, should I enter?”
The “talk to operator” story, for example, has two
variants. If the operator is available, the system will
tell the user that she is now being redirected to an
operator. If an operator is not available, the system
will tell the user when FerieKonto is open and
explain how to consult a Web site for information.

Additional design support

In addition to typical dialog modeling and struc-
turing tasks, CDL lets the modeler experiment with
ideas that the programming language (HDDL in
our case) might not support directly—ideas that

Computer

could lead to a more varied and fluent dialog. For
the FAQ SDS, we experimented with several ideas.

One is reductive simplification. Some stories have
a partial overlap that is unavoidable because the
same piece of information might be relevant in
quite different contexts. To avoid redundancy, the
system tracks which stories the user has heard. If
the user has asked about payment of holiday
allowance, the system will tell how this happens,
but it will tell when the money will be paid only if
the user did not already get this information from
another story.

Another idea we experimented with was barge-
in control. Barge-in is a technique that lets users
interrupt system prompts. The system then stops
talking and reacts to user input. Although barge-in
is standard in SpeechMania, the platform does not
include the ability to inform the system’s dialog
manager that a user has interrupted prompts.
Consequently, the system never knows how much
output a user actually heard before the interrup-
tion. Because part of our dialog design builds on
knowledge about what information the user has
already received, the FAQ SDS lets designers set
barge-in as an event condition if desired.

The ability to randomly switch among variations
of frequent phrases, such as “Are there other top-
ics you want to ask about?” helps make the dialog
less monotonous. Some variations that the FAQ
SDS randomly switched were “Is there any other
information you want?” and “Is there anything else
you would like to know?” We generally have three
variants of a frequent phrase.

The last idea we experimented with is confidence
control. The speech recognizer provides a confi-
dence measure between 0 and 1,000, which the
developer can divide into three score ranges: low,
medium, and high. We used 0-100, 101-200, and

1. COND ((V_currentName == MSN_amount_error__Qo)) {

2 MO_comment (“#COND ((V_currentName == MSN_amount_error_ _Qo))”);

3 M_setStory (amount_error) ;

4. M_statPoint

5o MC_preCond (MSN_amount_error__QhI, MSN_help_ QhH, MSN_bargeIn__ Qd);

6 MC_preCond_Qo

7 QUESTION (MH_allConcepts) {

8 INIT {

9 MC_utterance_Qo

10. MP (“-Do you want information about ’‘payment of small amounts, ’’problems
with the employer,’ or to get a ’phone number’?”);

11. MP_bargeIn_Qo

12. }

13. MC_events (MH_allConcepts) ;

14. }

15. MC_heard (V_amount_error__QoState) ;

16. MC_postQuestion (3157, V_amount_error__QoState);

17. MC_nextState (V_menu__more__QdState) ;

18. IF ((”smallConcept && smallConcept.positive)) {

19. MO_comment (“# (*smallConcept && smallConcept.positive)”);

20. V_topicFound := TRUE;

21. MC_setState (V_amount_small__r07_03State) ;

22. V_catchLevel := V_catchLevel + 1;

23. MS_used (small, smallConcept) ;

24, BREAK;

25. }

260 [l

27. }

201-1,000. The score value for any actual input
depends on how well the acoustic input signal from
the user matches the acoustic models of the con-
cepts in the system’s vocabulary.

A bad match can occur for several reasons, such
as heavy background noise, a foreign accent or
strong dialect, and out-of-vocabulary words. A low
score causes the system to ask the user for confir-
mation of what she said: “Did you say maternity
leave?” A medium score causes the system to repeat
the key concept(s) the user mentioned before pro-
viding an explanation: “You asked about mater-
nity leave. You cannot get your holiday allowance
while you are on leave, but” The user then
becomes aware of any misunderstanding as early
as possible and can make a correction. A high score
causes the system to give the user implicit feedback
by mentioning in the information it outputs the key
concept(s) it is responding to: “You cannot get your
holiday allowance while you are on leave, but....”

IMPLEMENTED DIALOG MODEL

The final FAQ SDS dialog model comprises 85
concepts and 233 prompts, including 66 holiday
allowance rules, structured into 102 stories. The
dialog model is compiled either into human-read-
able form, the HTML in Figure 3, or into exe-
cutable code, as in Figure 5. Although our
executable code was in HDDL, it could also have
been in VoiceXML, an upcoming standard for spo-
ken dialog.® The model is about 2,400 lines of CDL
(XML), which translates to nearly 50 pages of
HTML description and 12,000 lines of HDDL code
(compact, full of macro calls). The model also has
2,700 lines of grammar.

e could not have dealt with the SDS com-

plexity or communicated the model to

the domain experts without the CDL
abstractions. So far, FerieKonto has not formally
investigated users’ satisfaction with the system and
will find it difficult to do so, since the company is
not allowed to log which users call the system.
According to the FerieKonto case officer responsi-
ble for the system, which receives roughly 12,000
calls per year, they have received no negative user
comments in the year and a half the system has been
in use. The case officer also stated that the HTML
version of the dialog model was easy for them to
follow. Making changes and additions only in the
CDL model guaranteed consistency between the
HTML and HDDL versions.

The ideas of a customized language and core pat-
terns apply well to SDS design. Widespread use of
CDL would require a dedicated editor and inte-
grated development environment, but for limited
use, the solution we have described seems quite suf-
ficient. @

Acknowledgments

This project was supported by The National
Agency for Enterprise and Housing and the Danish
Ministry of Economic and Business Affairs. We
thank the staff at FerieKonto for kind, competent,
and enthusiastic cooperation.

References
1. H. Dybkjeer and L. Dybkjer, “Experiences from a
Danish Spoken Dialogue System,” Proc. 2nd Danish

Figure 5. Machine-
generated code for
part of the fragment
in Figure 4. The
code, which
constitutes the
runtime version of
the dialog model,
is in the HDDL
programming
language. Macros
(conventionally
named with an
initial M, MC, or
MQ0) implemented
much of the FAQ
semantics. State
names start with
MSN. Variable
names start with V.

August 2004

INDUSTRY
JLLILLIEN 809.11

HCI Research Symp., DIKU tech. report 02/19, Univ.
of Copenhagen, 2002, pp. 15-18.

. H. Aust et al., “The Philips Automatic Train Time-

table Information System,” Speech Comm., vol. 17,

1995, pp. 249-262.

. N.O. Bernsen, H. Dybkjzr, and L. Dybkjer, “What

Should Your Speech System Say?” Computer, Dec.
1997, pp. 25-31; http://www.disc2.dk/tools/codial/
index.html.

. B. Balentine and D.P. Morgan, How to Build a Speech

Recognition System. A Style Guide for Telephony
Dialogues, 2nd ed., EIG Press, 2001.

. A.L. Gorin et al., “Automated Natural Spoken Dia-

log,” Computer, Apr. 2002, pp. 51-56.

. N. Leavitt, “Two Technologies Vie for Recognition in

Speech Market,” Computer, June 2003, pp. 13-16.

ot

Hans Dybkjcer is a software developer at Prolog
Development Center in Denmark, where he heads
the speech group and works on interface specifica-
tions and the improvement of test procedures. He
also led the development of the FAQ SDS described
in this article. He received a PhD in computer sci-
ence from the University of Copenhagen. Contact

him at dybkjaer@pdc.dk.

Laila Dybkjcer is a professor at the University of
Southern Denmark’s Natural Interactive Systems
Laboratory (NISLab), where her interests include
development and evaluation of interactive speech
systems, usability aspects in interface design, and
dialog modeling and theory. She received a PhD in
computer science from the University of Copen-
hagen. Contact her at laila@nis.sdu.dk.

wireless networks

enhanced parallel ports

FireWire
token rings

IEEE Computer Society members work together to define
standards like IEEE 802, 1003, 1394, 1284, and many more.

HELP SHAPE FUTlulE TECHNOLOGIES
JOIN AN [EEE COMPUTER SOCIETY STANDARDS WORKING GROUP AT

www.computer.org/standards/

Computer

XXXOOXXXXXXXXX
XXOOXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXOOXXXXXXXXX
XXOXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXOOXXXXXXXXX
XXOOXXXXXXXXXXXX
XXXXXXXXXXXXXXX

August 2004

XXOXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXOXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX

Computer

