
Advanced Tools for the Study of Natural Interactivity

Claudia Soria*, Niels Ole Bernsen†, Niels Cadée°, Jean Carletta§, Laila Dybkjær †, Stefan
Evert∞, Ulrich Heid∞, Amy Isard§, Mykola Kolodnytsky†, Christoph Lauer+, Wolfgang

Lezius∞, Lucas P.J.J. Noldus°, Vito Pirrelli*, Norbert Reithinger+, Andreas Vögele∞

*Istituto di Linguistica Computazionale - CNR
Via Moruzzi 1, 56124 Pisa, Italy

{claudia.soria, vito.pirrelli}@ilc.cnr.it

†NISLab, Odense University
Science Park 10, DK-5230 Odense M, Denmark

{nob, laila, mykola}@nis.sdu.dk

°Noldus Information Technology b.v.
Costerweg 5, P.O. Box 268

6700 AG Wageningen, The Netherlands
{n.cadee, l.noldus}@noldus.nl

§University of Edinburgh, HCRC
2, Buccleuch Place

Edinburgh EH8 9LW, UK
{jeanc, amyi}@cogsci.ed.ac.uk

∞Institut für Maschinelle Sprachverarbeitung (IMS)
Azenbergstraße 12, D-70174 Stuttgart, Germany

{evert, heid, lezius, voegelas}@ims.uni-stuttgart.de
+Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
{clauer, bert}@dfki.de

Abstract
The NITE European project aims at building an integrated best practice workbench for multi-level, cross-level and cross-modality
annotation, retrieval and exploitation of multi-party natural interactive human-human and human-machine dialogue data. In this paper
we intend to broach the general lines of software development envisaged in NITE, the four prototypes we intend to make available to
the scientific community at large and our approach to usability evaluation of the prototypes. Under the aegis of LREC 2002 we plan to
encourage conference participants to take active part in usability evaluation and provide early feedback to our software design choices.

1. Introduction
The main objective of the NITE European project

(Natural Interactivity Tools Engineering
http://nite.nis.sdu.dk) is to build an integrated best practice
workbench for multi-level, cross-level and cross-modality
annotation, retrieval and exploitation of multi-party
natural interactive human-human and human-machine
dialogue data. Under the aegis of LREC-2002, the NITE
Consortium proposes to organize a demo session where
conference participants are invited to test and evaluate
four software prototypes for the analysis/annotation of
multimodal interaction between two or more persons, or
between persons and systems, through speech, gestures
and facial expressions.

The present paper illustrates the software being
developed by NITE to improve upon current support for
working with corpora of recorded audio and visual data
from human-human and human-system interaction. This
includes the transcription, annotation, coding, and analysis
of this data, where the interaction can be purely spoken or
involve other communicative modalities, such as gesture.
ISLE deliverable D11.2 (Dybkjær et al., 2001) argues that

the main shortcomings of current software provision in
this area fall in three areas: i) support for the process of
adding annotation and structured coding to a corpus
according to a defined scheme, where “structured” means
that tags refer not just to timespans but can relate to each
other; ii) support for the management of projects,
especially the storage of metadata to encourage data reuse
and information about the meaning and source of
structured coding; and iii) support for the development
and analysis of new forms of structured coding. For these
software functions, users would of course like to have
software that is stable, covers the complete range of their
needs, is easy to use, and can be adapted to new tasks. The
software being developed in the NITE project is designed
to address exactly these requirements.

Section 2 discusses and delimits the scope of the
planned developments in terms of the intended users and
functionalities. It also points out the major considerations
that have led us to a particular development strategy.
Because there are a number of existing tools that go part
of the way towards providing the required functionalities,
starting from scratch on one tool to serve all purposes
would be counter-productive. Section 3 describes the tools

already available to the user community, focusing in
particular on those already available within the NITE
Consortium. These background tools are to be seen as a
starting point for the development of more advanced
NITE prototypes, which are described in Section 4. Each
prototype is described in terms of its extra functionalities
and compared with the functionalities provided by the
background tools of Section 3. In our view of things, the
lines of development of the four NITE prototypes have the
potential of addressing the user needs identified in section
2. Finally, Section 5 describes the evaluation
methodological framework under which we intend to
gather input from prospective users.

2. Intended Users and Functionalities
Human interaction is of both academic interest and

economic and social importance. We expect NITE
technology to be of interest to industrial sectors that can
benefit from understanding how humans interact with
each other and with machines. The industrial sectors at
which NITE technology is targeted are spoken dialogue
systems and multimodal human-computer interfaces,
animation, communication technologies, and language
documentation, among the others. Finally, simply
documenting different languages and different kinds of
interaction, including their gestures, is a goal of some
potential users.

In order to address the needs of such a wide
community, a number of functions is required. Users must
be able to create video and audio recordings of
interactions; transcribe them, orthographically and
phonetically; time-align the transcription to the signal;
design and use multiple kinds of structured coding
applicable on either transcriptions or other representations
of speech such as waveforms; analyse reliability of the
codings; apply automatic coding processes to the data, and
hand-correct the results; display the data in different ways,
as they explore the relationships contained within it;
extract and index arbitrary parts of data; build statistical
descriptions of data; and analyze them using inferential
statistics.

Furthermore, users must be assisted in managing their
data e.g. by expressing metadata about the conditions
under which recordings were made, about the
transcription conventions adopted and, their level of
granularity and reliability; by providing information about
the codings available, together with an indication of who
or what coded the recorded data and whar portion of
recorded data was selected for coding. All this information
is taken to be critical not only to ensure consistency and
reliability of coding through a project lifespan, but also to
promote coded data exchange and future reusability. The
scientific community at large is becoming increasingly
aware of the importance of metadata information.
Although there already exist some tools that help users to
manage this information semi-automatically (ISLE D11.2,
Dybkjær et al., 2001), NITE will put considerable effort
into the provision and parametrisation of some missing
functions for data management.

3. What the User Community Already Has
The best way to characterize existing support is that

the core functionalities for hand code transcriptions,
coding display, indexing, and extracting data are not yet

provided, while the peripheral functions of transcribing,
performing basic or advanced statistical anlyses,
automatically coding data are.

Transcription is supported via packages such as
Transcriber1. Some users employ xwaves for this purpose,
and others use standard word processing, sometimes
aligning words with signal after the fact in xwaves.
Descriptive and inferential statistics can be performed in,
for instance, SPSS and Microsoft Excel, as long as it is
possible to export the data to be analysed in some kind of
simple tabular format. Tools for automatic data coding,
such as part -of-speech tagging, already exist. It would be
time-consuming to reimplement these functionalities.
Instead, we intend to make it possible to link our software
with existing tools by having them share a common data
format: XML. Many tools, such as Transcriber, Microsoft
Word, and some part-of-speech taggers, are already
starting to employ XML as a native data format or to
include export options. The filters for extracting data from
XML into tabular formats are quite simple, as are those
for uptranslating text -based transcriptions.

This leaves the core functionality of hand-coding,
including project management, the coding of structured
information which links existing codes in complex ways,
configurable data display, indexing based on queries
matching structural and temporal constraints on the data,
and extracting subsets of the data based on the same sorts
of queries. There are three existing tools that address this
core functionality, but each fail to provide the full support
needed. They are MATE, Anvil, and The Observer. The
following sections describe the main features and
shortcomings of each of them.

3.1. MATE
The MATE workbench2 is a software tool for the

display and annotation of XML encoded speech or text
copora. The workbench allows a user to display and edit
existing corpora, add new levels of annotation, perform
queries over part or all of a corpus, and display or output
the results. The format of the display and editing actions
are set up using rule-based stylesheets based on a pre-
standard version of the XSLT transformation language.
The workbench provides a number of pre-defined
stylesheets for use with particular annotation schemes, but
its major strength lies in the fact that the stylesheet
language is sufficiently high-level for writing stylesheets
to be significantly easier than writing an editor from
scratch. Any successful corpus project team is likely to
have someone who understands the rudiments of XML,
since otherwise they will have difficulty preparing their
data for input into existing tools, analysing the data, and
so on. In the MATE concept, this person has all of the
necessary skills to specify tailored interfaces. Queries can
also be performed to select a subset of the corpus for
further processing within the workbench or for output to
external tools. The workbench has in-built support for
standoff annotation in which annotations are not all stored
in one document but are linked by means of pointers. This
allows the editing of one level of annotation without

1 See http://www.etca.fr/CTA/gip/Projets/Transcriber/
2 The MATE workbench is freely available and the code can be
downloaded under a GNU public licence from
http://mate.nis.sdu.dk/.

disturbing other levels and also makes it possible to have
multiple annotation tiers with overlapping branches. The
MATE workbench has been used successfully on several
corpora for coding phenomena such as dialogue structure,
tutoring strategy, and the use of metonymy, but there are a
number of areas in which improvement is necessary.

The support for using the raw speech data while
annotating is very limited it is possible to play a section
of speech, but it is only possible to display a waveform of
the entire speech file, and the waveform display is not
properly integrated with the rest of the workbench. There
is also no support for spectrograms. The MATE
workbench has no video capability at all, and would need
to be extended to permit the annotation of video resources.
As is common with the first implementation of a radically
new idea, the workbench is under-documented and not as
robust as would be required for widespread use. Neither
the query language nor the display objects have been
optimised, and it is necessary to have a detailed
knowledge of the complex (and mostly undocumented)
interactions between them in order to write an efficient
stylesheet. The language in which graphical user interface
actions are specified needs to be both simplified and
extended, and it must be possible to load more XML
material into the workbench at one time. The workbench
is also too slow in practice for many common coding
tasks.

3.2. Anvil
Anvil3 is a research tool for the analysis of digitized

audiovisual data (see Kipp, 2001). It allows the user to
code human behavior and other visually accessible
information in temporal alignment with speech and other
auditory signals. Anvil was written as part of a PhD
project on nonverbal communication at the University of
the Saarland with support from the Deutsche
Forschungsgemeinschaft (DFG) and builds on experiences
with mass corpus annotation of dialogue acts within the
speech-to-speech machine translation project Verbmobil.
It has been actively used to encode video samples of a
German TV show with nonverbal communication events,
mostly gestures, and linguistic information.

In Anvil, for each type of behaviour (for instance,
hand gesture or bodily posture) the user first defines an
annotation scheme representing the range of behaviours
that can occur. Then the user can use the software to
divide the video into behavioural units, each represented
by a code, for each type of behaviour. During coding and
subsequent display of the data, codes are shown in layers,
with one layer for each annotation scheme. These layers
are displayed one below the other, running from left to
right, just as a musical score (or “Partitur”, in German)
shows instrumental parts in parallel. Behavioural units are
depicted as boxes (rectangles) whose left and right borders
correspond to their start and end points on a common time
axis, the width thus being the duration of the element.
Adding labels and colours to these bars allows intuitive
comprehension of such a behavioural “Partitur” where
temporal relationships between the layers, categories and
durations can be captured at a glance. Anvil aims to make
coding as intuitive and fast as possible, and to give the one

3 Anvil is freely downloadable for research purposes from
http://www.dfki.de/~kipp/anvil.

most informative view of the resulting data. Although for
the most part one can consider coding for the different
types of behaviour to be independent even though they are
temporally synchronized, it is possible to link behavioural
units across the annotation layers into more complex
structures. Anvil's control and data files are all in XML,
the W3C standard markup language. This means that
Anvil users can exploit the many tools that exist for the
manipulation and transformation of XML files, especially
when they wish to carry out data analysis.

Anvil is written completely in Java, making use of a
recent extension called Java Media Framework (JMF); it
works with the common video formats that are supported
within JMF, such as AVI and QuickTime.

Anvil has some very attractive features, such as its
Partitur-based visual representation, which make it an
attractive choice of tool for work in natural interactivity.
However, Anvil is also a very basic software package and
needs further work before it will properly support users.
Currently, for instance, it lacks on-line help, keyboard
shortcuts for performing annotation, and the ability to add
free structure annotations or “comments” to the data, even
though all of these things are important during video
coding. Some users may have multiple video tracks, but
Anvil is limited to displaying one. Anvil is also currently
intended to support only the video coding process and no
related functions. Users must directly edit an XML file in
order to configure the annotation schemes to be applied. It
has no search, import, or export capabilities; instead, the
user is expected to work directly with the XML which
Anvil reads and produces. Although Anvil allows some
linking across annotation layers, the basic expectation is
of independence, with the output XML conforming to one
rigid, non-tailorable structure.

Despite its being an attractive starting point for
subsequent development, Anvil is not open source
software and hence cannot directly be used as a starting
point of development in the framework of the NITE
project.

3.3. The Observer
The Observer (Noldus et al., 2000) is a professional

tool for coding and analysis of video data (stored on tape
or in digital media files) of any kind of behavioural
process. It is a commercial package that works on
Windows platforms (Windows 95, 98, NT, 2000 and XP).
Installation is easy and straightforward. The user can
design configurations for coding, and keep a library of
configurations for re-use. However, the richly structured
and inter-linked coding schemes typical for the NITE
project are not supported in the current version.

Annotations can be coded from the keyboard in real-
time after some practice. An overview window with all
the codes in the configuration can be displayed during
coding. The event log, which is a table with time running
vertical, keeps track of the time and all different
behavioural classes (or tracks). The event log is linked to
the video time, which allows for quick searching and
reviewing. It takes some time to learn to master these
options. A horizontal timeline like in the ANVIL program
might be a more intuitive display of multiple tracks. Text
transcription is possible, but text is treated as free
comments on time intervals. For NITE, more structure is
needed for speech annotation, for example specifying

words within phrases, and phrases within sentences. It
would be nice to be able to do video annotation,
graphically marking up a specific part of the video image
where a certain behaviour occurs.

The Observer data files contain the date and time of
scoring, and every code is stored with a time stamp. The
names of the people who did the coding can be stored as
independent variables. There is a need for more elaborate
project administration containing, for example, which
MPEG files still need to be encoded, and which
annotations have been checked for accuracy. XML
import/export is not currently supported.

The Observer has several data analysis functions. Most
of these require some training and practice before they can
be used. Below we list each function with its basic
functionality as well as needs for enhancement as
identified by the NITE partners, and what is currently
under development as a result.
• The time-event view shows either a table or a plot.

The table gives a basic table-like overview of the
annotation. The plot looks like the ANVIL horizontal
timeline display format, with one line for each
behavioural class (or track). However, there is no
display of spoken text, sound waveforms or other
signals, and it is not possible to create links between
different tracks.

• Reliability analysis lets you compare coding of the
same video data by two different people, by
calculating the Kappa statistic and confusion
matrices. However, you cannot compare more than
two people’s coding simultaneously.

• Elementary statistics provides frequencies and
distributions for all codes. It is not possible to display
graphical plots, but data can be exported to Excel or
graphics programs.

• Lag sequential analysis can be used to analyze the
frequency of transitions between behaviours, and the
probabilities of those transitions. Transition
sequences from up to nine behaviours before a
specific behaviour, to nine behaviours after it, can be
analysed.

For the NITE project, the main shortcoming of The
Observer is that speech annotation and analysis have not
yet been implemented. Support for complex coding
schemes, with many cross-linked tracks that can be linked
and grouped, is also needed. The most basic improvement
to The Observer would be XML import/export
functionality, which enables commu nication with text
transcription programs and other linguistic annotation
tools. Our developers are currently working on this. More
NITE requirements are in our development plans for the
next generation of The Observer program.

4. Nite Prototypes

4.1. The Observer
The Observer 4, the latest release, will be

demonstrated. Compared to previous editions, The
Observer 4 features improved usability, especially for
design of the configuration or coding scheme. Data
selection has been completely redesigned, and allows for
the most complex filtering of annotation results. For
example, one can define time intervals of variable length
based on actual scored events, to answer questions like

‘How often did Peter grin between the time when John
entered the room, and the time when John left the room
again?’ Finally, The Observer 4 has an intuitive new
layout that shows projects and their content in a tree view.

A digital video file of a group discussion will be used
as an example throughout the demonstration. All parts of
the program will be demonstrated:

• The concepts of configuration design will be
explained, by showing the possibilities for
structuring a coding scheme.

• The method of annotation is shown, with all the
options for scoring, varying the video play speed
and searching functions. In addition, it will be
demonstrated how to build a video clip with
highlights from the annotation data, based on
annotated events.

• Examples of simple and more complicated queries
of annotations will be given using the extensive
options for data selection.

• Each of the analysis functions will be
demonstrated with an example: time-event tables
and plots, elementary statistics, reliability analysis
and lag-sequential analysis.

• Finally, it will be shown how to export raw data
and analysis results to graphics and statistics
programs for further treatment and hypothesis
testing.

During the demonstration, all ideas and comments on
implementing language support in The Observer are most
welcome. We are currently working on requirements for a
new generation of software, with support for annotation
and analysis of speech, among many other improvements
and new features for other fields of research.

4.2. The Standard Display and Coding Interface
Although the MATE concept facilitates tailored

interface design, it is inconvenient to have to write
stylesheets before anything can be done with some data,
especially since many end users do not personally have
the technical skills required. Therefore, it has been
decided to equip the NITE workbench with a familiar –
albeit fairly complex – visual user interface which will
enable ordinary users who are not skilled in any particular
programming language to easily (i) add their own coding
scheme, (ii) annotate a corpus using a coding scheme, and
(iii) analyse and retrieve information from annotated
corpora. So far, our development focus has been on
facilitating annotation (ii). In the following we describe
the visual annotation interface which we expect to
demonstrate in late spring 2002.
The visual interface consists of the following five main
components:
1. the main window which contains the main menu, the

title, etc.;
2. the main window toolbar which contains the

changeable (contents-sensitive) set of buttons;
3. a changeable amount of panels of the i-th class of

phenomena to be annotated – 1 up to 10 panels;
4. the raw data windows displaying the different types

of raw data – video, audio;
5. the common control board for controlling the active

raw data window.
Figure 1, which includes the above five points,

provides an idea of what the visual interface will look like.

In addition to the five main components, numerous
palettes (dialogue boxes) each including several controls
will be provided for the user to work with different coding
schemes, inserting/deleteting tags, to visualising tags, etc.

Figure 1. The NITE visual interface illustrated

To perform the actual annotation, the user will

basically have to go through the following three steps:
1. select a class of phenomena to annotate using a

particular coding scheme;
2. edit (insert/delete) a time marker on the time-line of

the appropriate annotation panel, i.e. the one related
to the selected coding scheme;

3. visualise the tags.
Markup of the time-line of the appropriate annotation

panel is performed in a two-step process:
1. insert the marker of an appropriate tag onto the time-

line;
2. visualise the tags, having chosen an adequate style of

visualisation from the pre-defined set of options
(Figure 1).

This approach allows a style of work with the
annotation tool which is uniform in the following sense:
for any level of annotation and any coding scheme, the
user performs the same set of actions: choosing from the
panel a class of phenomena or a coding scheme, choosing
the appropriate button (the appropriate tag) from the
coding palette, inserting the marker of the tag onto the
time-line on the panel and, finally, choosing the style of
graphical visualisation of the tags on the time-line.

The visual interface is being implemented in C++ and
works on a Windows platform. More details on the visual
interface can be found in (Bernsen, Dybkjær, and
Kolodnytsky, 2002).

4.3. Adding External Functionality: Plug-ins for
Signal Processing and Annotation

To annotate multi-modal data it is not sufficient to only
add textual information. The annotator should also have
access to analysis tools, and should be able to insert mark-
up information directly in the multi-modal signal data. In
NITE we envision the realization through plug-ins: the
workbench has an interface to add external modules for
e.g. signal analysis or markup directly in the video stream.
As prototypical test environment we defined a plug-in
interface in Anvil and added two modules for spectral
analysis and video markup.
Sonogram transforms time-domain based audio signals
into the frequency domain using different methods like
FFT or wavelet transformations. The most common audio

and video file formats are supported. The two dimensional
frequency presentations can be adjusted by changing the
processing parameters (see Figure 2). It id also possible to
show three-dimensional frequency plots. Signal plots can
be stored as “Scalable Vector Graphics” (SVG) and
bitmaps.

Figure 2: The Sonogram plug-in

The second plug-in currently realized in Anvil is used to
insert mark-up information directly into the video data.
The user can link each annotation tag with a tag in the
video stream (see Figure 3). A gesture’s main stroke is
marked with a highlighted rectangle.

Figure 3: The video annotation plug-in

While in Anvil only one mark-up can be linked to the
video stream, in NITE we will extend this functionality.
The user can mark interesting events in the video, e.g.
gesture movements, with tags for start and end points and
interesting events in between. The annotation plug-in will
compute one tag for the annotated movement so that a
gesture tag in the textual annotation can be linked to the
whole movement.

4.4. Generating Specialist Interfaces from
Declarative Specifications

Our last demonstration shows a partial reworking of
the MATE concept. Our goal is an engine that will create

specialist user interfaces for specific corpora and specific
tasks from a declarative specification of the interface's
form and behaviour. Although MATE was successful in
demonstrating this concept, it must be considered a
prototype rather than an end-user system because it is
slow and buggy, and the terms of the declarative
specification relating to behaviour were given insufficient
consideration. We are improving upon MATE in three
ways. First, we are improving performance by employing
what is now standard XML technology and considering
possible efficiencies in the implementation. MATE had to
define and implement its own processing techniques, and,
as a radically new idea, had little time for optimization.
Since then, XML standards have been developed for
stylesheets and stand-off annotation, with professionally
developed library implementations freely available.
Second, we are adjusting our data model and the query
language that accompanies it to make them clearer and
better suited for multimodal data. Third, we are re-
designing the declarative specification language used for
defining an interface to make it more usable and less
reliant on implementation details.

At this stage in the project, we will be demonstrating
the use of standard XML technology to build a data
display from a declarative specification of the display. As
part of demonstrating this very early prototype, we will
explain the underlying concept from the vantage points of
the software designer, the interface designer, and the end
user. Our end goal is a declarative specification format
that admits sufficient flexibility for interface designers to
define good interfaces quickly, and an engine that makes
usable interfaces from these specifications. (Carletta,
McKelvie, and Isard, 2002) argues that this flexibility is
an important advance in functionality and gives a more
complete description of the basic concept underlying the
engine.

5. Evaluation Procedure
One of our aims in demonstrating the NITE prototypes

is to gather feedback from prospective users about the
tools’ usability, performance, and concept. For this reason,
we intend to pair each hands-on demo session with an
evaluation session during which users will be asked to go
through a questionnaire essentially aimed at evaluating the
usability of the different prototypes. The framework in
which we intend to perform evaluation is better known as
usability testing, and will make use of the two well-known
techniques of assessment tests and cognitive walkthrough
(see Nielsen, 1994).

By means of assessment tests users are involved in a
quantitative and qualitative examination of a partially
working design, in order to determine areas of difficulty
before they become hard to change.

So-called cognitive walkthrough is a more expert-
oriented review, which makes use of “task scenarios” to
guide evaluators in their analysis of an interface.

The feedback gathered will inform subsequent
following development. We aim at involving small groups
of users in parallel.

Usability will be measured along the major parameters
sketchily illustrated in Table 1. Evaluators should note,
however, that the demonstrated tools are still in a
prototype version, and hence cannot be treated as final
products. It is also worth emphasizing that the different

parameters will have to be differently weighted according
to the different tools being evaluated.

Learnability How easy is it for new users to find

features and do common tasks? Can
the user get a job done the first time
they sit down at a computer?

Efficiency Does the new product reduce the
time to complete a task? Does the
product match their existing work
flow or obstruct it?

Memorability How often do users need to re-learn
a feature? How often do they need
to consult a manual for a feature
they have used before? Are the
operations of the product tangible to
the user?

Errors How often do users make mistakes?
Satisfaction Did the user like the product? Was

it a good first impression? Is the
product adding or decreasing stress
on users?

Productivity Do they get more done before or
after implementation of the
product? Can their existing work
flow be improved and augmented to
increase how much a worker can
do?

Training time Does the product require training?
Data input speed
and interpretation of
data

Can the structure of the product
increase how fast you can enter
information? How fast can you
understand what the computer is
displaying for you? Are you missing
important information?

Technical support
needed

A technical support call means the
product failed for a user in one of
the above categories. How can this
be reduced?

Maintenance costs Is the product durable? Can it be
made more stable? Can it be more
simple? Can product updates be
easier and faster?

Table 1: Usability parameters

It must be noted, indeed, that the four demonstrated

tools require a slightly different evaluation methodology,
depending on the different features and functionalities, but
also on the underlying developmental goals. For instance,
in at least three cases the NITE demonstrations
concentrate on the form and behaviour of relatively static
(but configurable) end user interfaces for data display,
manipulation, and analysis. For these tools, the usability
testing or “cognitive walk-through” is most appropriate.
On the other hand, evaluating the demonstration version
of the interface design engine is more difficult. The
demonstration does not show all of the functionality that
the user community needs at this point. Here, what should
be evaluated is the basic concept. The demonstration will
be a success if evaluators judge that the sort of flexibility
that the engine accommodates is a useful advance on
current functionality and that potential users will be able

to configure the technology as they require using the
building blocks that we are providing. Evaluators for this
purpose must be somewhat more technically-minded than
the end users required for the other demonstrations. In this
case, thus, evaluation will take the form of in-depth group
discussion with a small number of evaluators to pinpoint
potential problems with the design; these interviews will
inform downstream development. In a similar way,
evaluation of the two modules for spectral analysis and
video markup not only requires users’ judgement about
general usability, but also experts’ comments about
whether or not it actually complies with its underlying
software concept as a plug-in component. For this reason,
the task scenarios that will be used during the evaluation
sessions will be differentiated according to the different
prototypes to be tested.

6. Conclusions
The NITE project aims at building an integrated best

practice workbench for multi-level, cross-level and cross-
modality annotation, retrieval and exploitation of natural
interactive behavioral data. The purpose of this demo is
not only to describe to the user community the software
design that is under development in the project, but also to
gather early advice and input from the user community
about the prototypes’ usability and concept. Such an input
will be helpful for user-centered development both during
and after the project, and will likely highlight interesting
areas of further improvement.

7. Acknowledgements
We gratefully acknowledge the support of the NITE

project by theEuropean Commission's Human Language
Technologies (HLT) Programme.

8. References
Bernsen, N. O., Dybkjær, L. and M. Kolodnytsky (2002).

The NITE Workbench - A Tool for Annotation of
Natural Interactivity and Multimodal Data. To appear in
Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC 2002), Las
Palmas, May 2002.

Carletta, J., McKelvie D. and A. Isard (2002, to appear).
Supporting linguistic annotation using XML and
stylesheets. In G. Sampson and D. McCarthy (Eds.),
Readings in Corpus Linguistics. London and NY:
Continuum International.

Dybkjær, L., Berman, S., Bernsen, N. O., Carletta, J.,
Heid, U. and J. Llisterri (2001). Requirements
Specification for a Tool in Support of Annotation of
Natural Interaction and Multimodal Data. ISLE
Deliverable D11.2, July 2001.

Kipp, M. (2001). Anvil - A Generic Annotation Tool for
Multimodal Dialogue. In Proceedings of Eurospeech
2001, Aalborg, Denmark, pp. 1367-1370.

Nielsen, J. (1994). Usability Engineering. Morgan
Kauffmann.

Noldus, L.P.J.J., Trienes, R.J.H., Hendriksen, A.H.M.,
Jansen H., and R.G. Jansen (2000). The Observer
Video-Pro: new software for the collection,
management, and presentation of time-structured data
from videotapes and digital media files. Behavior
Research Methods, Instruments & Computers, 32:197-
206.

