
The MATE Workbench –
A Tool in Support of Spoken Dialogue Annotation and Information Extraction

Laila Dybkjær and Niels Ole Bernsen

Natural Interactive Systems Laboratory
Science Park 10, 5230 Odense M, Denmark
Email: laila@nis.sdu.dk, nob@nis.sdu.dk

Tel: +45 65 50 35 53, +45 65 50 35 44, Fax: +45 63 15 72 24

ABSTRACT

The increasing variety and sophistication of spoken language
dialogue systems (SLDSs) emphasises the need for tools in
support of their development and evaluation as well as for
appropriate evaluation criteria. In this paper we describe how
the MATE workbench can be used during SLDSs development
to efficiently produce corpus-based information on SLDSs and
their components. The information retrieved from the annotated
corpora can be used for evaluation purposes and provide
important directions for further development. Examples are
drawn from dialogue management and human factors of SLDSs.

1. INTRODUCTION

The increasing variety and sophistication of SLDSs emphasises
the need for development support tools. Such tools include not
only development platforms, developers’ kits, and plug-and-
play components, such as speech recognisers and synthesisers.
Tools are also needed for handling data on vocabulary, grammar
and other linguistic aspects, on users’ dialogue behaviour, etc.
The more innovative and sophisticated the SLDSs are that we
want to build, the more detailed knowledge is required on, e.g.,
the dialogue acts which occur or users’ misunderstandings of
system utterances. The collection of such information is time
consuming, requiring the recording of spoken dialogues
between people and a, possibly simulated, system, transcription
of the dialogues, markup of the phenomena of interest in the
corpus, and, finally, systematic extraction and analysis of
information on those phenomena. We need tools which can
facilitate this entire process, making it faster, more cost-
effective and able to produce re-usable data.

The MATE project (http://mate.nis.sdu.dk) was launched in
early 1998 in response to the need for standards and tools in
support of annotation and exploitation of spoken language
resources. This paper first summarises the results of MATE,
including a brief description of the MATE workbench. We then
discuss and illustrate in detail how the MATE workbench can be
used during SLDSs development and evaluation to produce
corpus-based information on important issues, such as dialogue
design adequacy and users’ communication strategies.
Examples are drawn from work done elsewhere on dialogue
management and human factors of SLDSs.

2. MATE RESULTS

2.1 Theoretical Issues

The approach adopted in MATE was to begin by reviewing
existing coding schemes for selected annotation levels. The
annotation levels are prosody, (morpho-)syntax, co-reference,
dialogue acts, and communication problems, as well as cross-
level issues concerning interactions among the levels. The
selected levels are very different and thus present a broad range
of problems for the coding tool builder. Our assumption was
that if a markup framework and a tool set could be created
which would work for those levels in a consistent and
homogeneous manner, then the framework and the tool set are
likely to generalise to other annotation levels as well.

The state-of-the-art review analyses more than 60 coding
schemes from projects world-wide and belonging to the MATE
annotation levels. For each scheme the following information
items were requested: coding book, if any, the number of
annotators who had worked with it, the number of annotated
dialogues/segments/utterances, evaluation results, if any, the
underlying task, a list of annotated phenomena, and the markup
language used. Annotation examples are provided as well. The
results are presented in [9].

Based on the state-of-the-art review, MATE has developed a
markup framework proposal for a standard for the definition and
representation of markup for spoken dialogue corpora at
multiple levels [5]. The framework is a conceptual model which
basically describes how files are structured, i.a. to allow for
multi-level annotation, how tag sets are represented in terms of
elements and attributes, and how to provide essential
information on markup, semantics, coding purpose, relations to
other codings, etc. by using coding modules. The coding module
is the core concept of the framework. It extends and formalises
the concept of a coding scheme. Roughly speaking, a coding
module includes or describes everything that is needed in order
to perform a certain kind of markup of spoken dialogue corpora.

For each of the annotation levels addressed, MATE has selected
one or several of the most commonly used state-of-the-art
coding schemes and turned these into MATE best-practice
coding schemes described according to the markup framework
[10]. This worked out nicely, ensuring a common and user-
friendly approach across annotation levels. It is easy for the

annotator to work on multiple coding schemes and/or levels,
because use of the same set of software tools is facilitated and
the same interface look-and-feel provided independently of the
annotation level in question.

2.2 The MATE Workbench

Along with the theoretical work, a workbench has been
developed which supports the MATE markup framework and all
coding schemes expressed in terms of the framework. The
MATE workbench is easy to use, enables annotation,
information extraction including statistics, and import from, and
export to, different file formats. The workbench is implemented
in Java to make it platform-independent. The workbench has a
modular architecture which facilitates updates and addition of
new tools and annotation schemes by its users. XML is used for
the internal coding file representation. The source code of the
workbench is available under an open source license, see
http://mate.nis.sdu.dk where also a discussion forum has been
started with the aim of addressing identified problems and
pointing to additions made by individual workbench users and
which may be of benefit to other users. The MATE developers
continue to add and improve functionality as reflected in the
currently most recent version available at the MATE web site.

To provide input to the workbench specification, a number of
existing annotation tools were analysed, such as the Alembic
workbench and Nb (for both, see [8]). Moreover, the MATE
markup framework and the analysis, adaptation and inclusion in
the workbench of existing state-of-the-art coding schemes have
served as sources of input to workbench functionality and
usability design and development. At the time of writing, the
following functionalities are available in the MATE workbench:

The MATE best practice coding modules are included as
examples which means that there is immediate support for
coding at five annotation levels.

There is no transcription module in the workbench. However, a
converter from Transcriber format
(http://www.etca.fr/CTA/gip/Projets/Transcriber/) to MATE
format enables transcriptions made using Transcriber to be
annotated using the MATE workbench.

A coding module editor enables users to add new coding
modules for already existing levels as well as for new levels
(including the transcription level).

Style sheets are used for the visual presentation of corpora
which are being annotated using a particular coding module.
Phenomena of interest in the corpus may be shown in, e.g., a
certain colour or in boxes. Style sheets can be edited and new
ones created using the MATE workbench.

During annotation, an audio tool enables users to listen to
speech files and have them displayed as a waveform.

Import of files from XLabels and BAS Partitur to XML format
is supported. Other converters can easily be added. Export to
file formats other than XML can be achieved by using style
sheets. For example, information extracted by the query tool
may be exported to HTML to serve as input to a browser.

The workbench enables information extraction of any kind from
annotated corpora. Query results are shown as sets of references
to the queried corpus. Extraction of statistical information from
corpora, such as the number of marked-up nouns, is also
supported. Computation of important reliability measures, such
as kappa values, is enabled.

On the usability side it has been a priority to achieve ease of
use. This is why, for instance, the coding module editor has
been added. It helps the user to specify the markup declaration
for a new coding module almost without requiring any
knowledge of the underlying XML representation. The coding
module editor automatically generates a DTD which is then
used internally by the workbench. Unfortunately, the MATE
markup framework has not yet been fully exploited as an
intermediate layer between user interface and internal
representation. Thus, the underlying XML format has not been
entirely hidden from the coding module editor’s interface.
Peculiarities of, and lack of flexibility in, XML have been
allowed to unduly influence the way the user must specify the
markup declaration. It is on our action list to solve this problem.

In spite of the above, the coding module editor actually works
quite well from a usability point of view. The real usability
problem in the workbench is the creation of new coding
visualisations. Writing the style sheets actually requires
programming skills because no editor is provided. The user
must edit the raw style sheet code (or write new code). It is high
on our wishlist to enable users to easily define new
visualisations.

3. DEVELOPMENT AND EVALUATION
USING THE MATE WORKBENCH

During SLDSs development, even of simple systems, many
different issues must be considered and evaluated in some way.
Quite often, corpora are collected to help the development of the
system proceed in the right direction. This happens throughout
the development process. At the very beginning, transcribed
human-human dialogues may provide useful input to the system
design. Later on, e.g., Wizard-of-Oz corpus data and field test
corpus data may be used to evaluate and guide development, or
data from controlled user tests may be used to decide if the
system conforms to the specifications. At any stage during
development, corpus data are being used for a wide variety of
development and evaluation purposes, depending on, i.a., the
particular SLDSs aspect or module that is being addressed. For
instance, corpus data may be used for training and testing of the
speech recogniser, or corpus data may be used to decide which
vocabulary and grammars to include in the system and to test
their coverage, etc.

In recent years, increasing attention has been paid to SLDSs
aspects such as dialogue management and human factors. It has
become clear that corpus data can provide much valuable
information on the adequacy of the interaction design. In the EU
DISC project on best practice in the development and evaluation
of SLDSs (http://www.disc2.dk), we have proposed that the
overall design goals for creating appropriate dialogue managers
and usable interactive walk-up-and-use SLDSs may be
systematically pursued by focusing on two comprehensive sets
of best practice dialogue manager issues and usability issues,
respectively. When developing a dialogue manager, for

instance, the developer should decide whether or not the
dialogue manager should provide top-down support for input
language processing. If the answer is ‘yes’, then dialogue
manager optimisation must take that issue into account. Thus,
each relevant best practice issue provides a focal point for
optimising the dialogue manager during development and
evaluation. To do a complete evaluation of the dialogue
manager, the developers must apply evaluation criteria which
correspond to all the relevant issues [2, 3]. A similarly
comprehensive set of issues and evaluation criteria for human
factors in SLDSs are presented in [4, 6].

Many of the evaluation criteria which we have identified for
dialogue management and human factors are to be applied to
data extracted from annotated corpora. One of the best practice
coding modules in the MATE workbench is a coding module for
the markup of human-machine spoken communication
problems. This coding module enables markup of data that are
relevant to the evaluation of a range of human factors and
dialogue management issues. It was developed to support the
design of co-operative system utterances in spoken human-
machine dialogue. It is based on 24 guidelines for co-operative
human-machine spoken dialogue which were developed from a
set of simulated human-machine dialogues and which include
and extend Grice’s co-operativity maxims [7]. Eleven of the 24
guidelines are generic ones which express what to do or take
into account when communicating co-operatively. The 13
specific guidelines are each subsumed by one of the generic
guidelines, explain how to do something expressed by the
generic guideline, and are specifically aimed at system design
([1], cf. Figure 1). The coding scheme based on those guidelines
has later been successfully tested on other spoken human-
machine corpora. However, as this was all done manually and
without the help of any tools for annotation and information

extraction, the coding and extraction process was very time-
consuming and yielded annotated data which were ill-suited for
re-use by others. The MATE workbench is changing all that.

We have not yet had the opportunity to use the MATE
workbench for marking up communication problems during
"real" SLDSs development and evaluation. Thus far, we have
only coded communication problems in test dialogues followed
by information extraction. The workbench has performed well
in these tests. Figure 1 shows a screen shot of the workbench
during markup of communication problems. The dialogue is
shown in the upper left-hand pane. The guidelines for
cooperative dialogue are shown in abbreviated form in the upper
right-hand pane. Types of violations of the guidelines are
incrementally added in the lower right-hand pane. This pane is
empty when annotation starts. The blue markup in the dialogue
refers to the types of violations described in this pane and the
violations themselves refer to the guidelines. The lower left-
hand pane contains annotator's notes. Again, this pane is empty
when annotation starts. Notes can be added whenever the
annotator needs to add some kind of explanation of, e.g., why
something went wrong in a dialogue so as to cause a
communication problem.

An interesting next step is to build on the evaluation criteria that
were systematically developed in DISC, in order to create new
coding modules which can be included in the MATE workbench
and distributed for general use. This would help promote best
practice in SLDSs evaluation and facilitate the exploitation of
collected human-machine spoken dialogue corpora. Coding
modules can be added or modified via the coding module editor
shown in Figure 2.

Figure 1. Markup of communication problems using the MATE workbench. s is system, u is user, N is note, GG is generic guideline,
SG is specific guideline.

Figure 2. Adding a new coding module to the MATE workbench.

4. CONCLUSION

MATE has taken a major step towards standardisation and
universal support of spoken dialogue data annotation and
exploitation by proposing a framework for the annotation of
spoken dialogue corpora at multiple levels and by building a
workbench in support of this framework. In parallel, work on
best practice in the development and evaluation of SLDSs and
components has been carried out in the DISC project. We have
illustrated how SLDS development and evaluation can be
supported and made more cost-effective by using the MATE
workbench. This was done by describing the coding scheme for
communication problems which is included as a coding module
in the MATE workbench and which is based on work done in
DISC. We believe that it will be possible to further combine
MATE and DISC results to help engineer a more efficient
SLDSs development and evaluation process. The obvious next
step is to develop and test MATE coding modules for the most
important among the evaluation criteria that were generated in
DISC.

5. REFERENCES

1. Bernsen, N.O., Dybkjær, H. and Dybkjær, L.: Designing
Interactive Speech Systems. From First Ideas to User
Testing. Springer Verlag 1998.

2. Bernsen, N.O. and Dybkjær, L.: Draft Proposal on Best
Practice Methods and Procedures in Dialogue
Management. DISC Deliverable D3.5, 1999.

3. Bernsen, N. O. and Dybkjær, L.: A Methodology for
Evaluating Spoken Language Dialogue Systems and
Their Components. Proceedings of the Second
International Conference on Language Resources and
Evaluation (LREC 2000), Athens, 2000, 183-188.

4. Dybkjær, L. and Bernsen, N.O.: Usability Issues in
Spoken Language Dialogue Systems. To appear in
Natural Language Engineering, 2000.

5. Dybkjær, L., Bernsen, N.O., Dybkjær, H., McKelvie, D.
and Mengel, A.: The MATE Markup Framework.
MATE Deliverable D1.2, 1998.

6. Failenschmid, K., Williams, D., Dybkjær. L. and
Bernsen, N.O.: Draft Proposal on Best Practice Methods
and Procedures in Human Factors. DISC Deliverable
D3.6, April 1999.

7. Grice, P.: Logic and conversation. In P. Cole and J. L.
Morgan (Eds.), Syntax and Semantics Vol. 3: Speech
Acts. New York: Academic Press 1975, 41-58.
Reprinted in Paul Grice: Studies in the Way of Words.
Cambridge, MA, Harvard University Press, 1989.

8. Isard, A., McKelvie, D., Cappelli, B., Dybkjær, L.,
Evert, S., Fitschen, A., Heid, U., Kipp, M., Klein, M.,
Mengel, A., Møller, M.B. and Reithinger, N.:
Specification of Workbench Architecture. MATE
Deliverable D3.1, 1998.

9. Klein, M., Bernsen, N.O., Davies, S., Dybkjær, L.,
Garrido, J., Kasch, H., Mengel, A., Pirrelli, V., Poesio,
M., Quazza, S. and Soria, S.: Supported Coding
Schemes. MATE Deliverable D1.1, 1998.

10. Mengel, A., Dybkjær, L., Garrido, J., Heid, U., Klein,
M., Pirrelli, V., Poesio, M., Quazza, S., Schiffrin, A. and
Soria, C.: MATE Dialogue Annotation Guidelines.
MATE Deliverable D2.1, 2000.

