Usability Issuesin
Spoken Language Dialogue Systems

LalaDybkjea and Niels Ole Bernsen
Naturd Interactive Systems Laboratory, Univeraty of Southern Denmark
Science Park 10, 5230 Odense M, Denmark
laila@nis.sdu.dk, nob@nis.sdu.dk

Abstract

Whilst spoken language didogue systems (SLDSs) technology has made good progress in recent
years, the issue of SLDS usability is 4ill lagging behind both theoreticaly and in actud SLDS
development and evauation. However, as more products reach the market and compstition
intendfies, there is growing recognition of the importance of sysemdicdly undersanding the
factors which must be taken into account in order to optimise SLDS usability. Idedly, this
undersanding should be comprehengve, i.e include al mgor human factors perspectives on
SLDSs, and exhaudtive, i.e. describe each perspective as it pertains to the detailed development and
evauation of any possible SLDS. This paper addresses the requirement of comprehensveness by
decomposing the complex space of SLDS usability best practice into eeven issues which should be
condgdered by developers during specification, design, development and evauation. The discusson
of each issue is amed to support the developer in building SLDSs which are likely to generate user
satisfaction, which are perceived to be easy to understand and control, and which enable smooth
user-system interaction. Based on the best practice issues discussed, criteria for evaluatiing SLDS
usability are proposed. Severa limits to our current underganding of SLDS usability are
highlighted.

1. Introduction

Spoken language didogue systems (SLDSs) have been on the market for about a decade and have
an even longer higory in research laboratories. An SLDS is an interactive system which conducts
spoken dialogue with its users. To do 0, the SLDS must not only recognise what the user says but
adso interpret it and generate an appropriate spoken response. Even the smplest kind of SLDS
needs, a least, speech recognition in order to match the acoudtic input 9gnd to its vocabulary of
words or phrases, dialogue management in order to decide what to do in view of the input message
received, and output generation in order to produce a spoken response to the user. This includes the
ability to produce an gppropriate response when the user’s input is not being recognised, or, in
more complex SLDSs, when the recognised input does not make sense in context. Thus, more
complex SLDSs need language understanding in order to understand what the recognised input
means in context.

The firs commercid SLDSs were smple spesker-independent, single word recognition systems
with a vocabulary of a few words (Bossemeyer and Schwab 1991, Franco 1993). Even very smple
SLDSs which merdy understand the words “yes’ and “no” and ther equivdents in a spesker-
independent way can do useful tasks, such as automating collect cal telephone services. Today’s
commercid SLDSs gpan a much wider range. There is now a rich vaiety of smdl-vocabulary
sysdems, cf. the examples a http//www.speechworks.com/demos/demoshtm and
http:/Aww.nuance.com/index.htma?SCREEN=demos. The most advanced commercid systems
have a vocabulary of severd thousand words, understand speaker-independent spontaneous speech;
do complex linguisic processng of the user’'s input; handle shifts in initistive, have quite complex
didogue management abilities induding, eg., reasoning based on the user's input, consultation of
the recorded history of the didogue so far, and graceful degradation of the didogue when faced
with users who ae difficult to undersand; carry out linguistic processng of the output to be
generated; solve severd tasks and not just one; and robustly carry out medium-length didogues to
provide the user with, for ingtance, train timetable information on the departures and arivas of
trains between hundreds of cities. Examples of advanced commercid systems are described in , eg.
(Aust, Oerder, Seide and Steinbiss 1995, Peng and Vitd 1996). The fdlowing is an English
trandation of a didogue with the Philips system.

1

S1: Helo. You are connected to a spoken dialogue system prototype. This is the automatic
train timetable information. You may inquire about train connections to one thousand German
gations. From where to where would you like to go?

U1: From Siegen to Cologne.

S2: When would you like to go from Siegen to Cologne?

U2: On 29th June.

S3: At which time would you like to leave on Saturday 29th June?
U3: At nine o' clock.

S4: So you would like to leave & nine o clock in the morning?

U4: Yes.

S5: There is the following connection with express train 3312 from Segen a 9:09, arivd in
Cologne at 10:39. Would you like to have the connection repeated?
US: No.

S6: Would you like another connection?

U6: No.

S7: Then | wish you a pleasant trip.

Figure 1. A didogue with the Philips train information system. U isuser and Sis system.

A huge amount of work has been invested in the component technologies that are integra to
SLDSs. Mgor results of these efforts are that speech recognisers and synthesisers can now be
bought as off-the-shelf software. The language processing and didogue management parts of SLDS
technology ae less maure but plaforms ae emerging which facilitate the building of rdaively
ample language processng and didogue management modules for SLDSs. Examples of such
plaforms and environments are the CSLU Toolkit (http://cdu.cse.ogi.edu/toalkit/) which is fredy
available, SpeechMania (http://mwww.speech.philips.com/ud/get/Pages/05fr.ntm) from Philips and
NLSA (http:/Aww.unisyscom/marketplace/nlw/) from Unisys both of which ae commercid
software. Multimodad SLDSs are gaining ground. Such systems process user input other than, and
in addition to, speech, such as lip movements, facid expresson or gesture, and/or generate output
in addition to speech, such as animated lips and faces, gesture, written text, images, non-speech
sound etc. (Benoit, Martin, Pelachaud, Schomaker and Suhm 2000).

Whilgt SLDSs technology has made good progress — even if much gill remains to be done — the
issue of SLDS usability remains an area with as many questions as there are solid answers. Far less
resources have been invested in human factors for SLDSs than in SLDS component technologies.
There has been surprisingly little research in important user-related issues, such as user reactions to
SLDSs in the fidd, usars linguisic behaviour, or the main factors which determine overadl user
saidaction. Smilaly, human factors have often been neglected in SLDS development and
evaduation. However, there seems to be growing recognition that usability is as important as, and
partly independent of, the technicd quality of any SLDS component and that qudity human factors
constitute an important competitive parameter.

In generd terms, a usable SLDS mugt satisfy user needs which are amilar to those which must be
sdtisfied by other interactive systems. Thus, what users need are SLDSs with which they ae
gengdly sdidfied in the overdl context of use and which they fed ae easy to undersand and
interact with. Interaction should be smooth rather than bumpy and error-prone, and the user should
fed in control throughout the dialogue with the system. It is the task of the SLDS developer to meet
those user needs conddered as overdl human factors design gods. However, SLDSs are very
different from more traditionad interactive sysems whose human factors aspects have been
investigated for decades, such as systems controlled through grgphicd user interfaces involving
screen, keyboard and mouse. Perhaps the most important difference is that speech is perceptudly
trandent rather than daic. This means that the user must pick up the output information provided
by the system the moment it is being provided or dse miss it dtogether. It dso means tha the user
has no way of ingpecting the interface prior to interaction. If the interface is not sdf-evident dl the
way through the didogue it must be learnt by trid-and-error through repeated interaction, which is
bad news for the casua wak-up-and-use user. Secondly, the processing (recognition, language
underganding, didogue management) of spoken input remans difficult to desgn and eror-prone
in execution, which is why SLDSs must be crafted with extreme care to ensure that users do not
produce spoken input which the system isincapable of handling.

2

Building on human factors results achieved in the European DISC project (http:/Aww.disc2.dk) on
best practice in the development and evduation of SLDSs (Falenschmid, Williams, Dybkjsg and
Bernsen 1999) we propose that, for the time being, the overal desgn gods for creating usable
interactive SLDSs mentioned in the preceding paragraph may be sysemdicdly pursued by
focusng on a comprehensve st of deven usability issues which incude al mgor human factors
perspectives on SLDSs. Each best practice issue provides a focd point for optimisng SLDS
usability during development and evauation. Some of the issues may gppear rather obvious, such
as the need for qudity speech recognition. Given the comprehensveness requirement, however,
quality speech recognition will have to be included among the best practice issues as a matter of
course. Partia obviousness notwithstanding, we are not aware of Smilar attempts to systematicaly
describe the usability issues which must be faced by today’s SLDS developers. In fact, DISC found
that SLDS development projects tend to select and apply but a smal subset of the evaluation
criteriato be described in Section 2.11 below (Heid, Bernsen, Dybkjaa and van Kuppevelt 1998).

To focus the paper within the space available, we focus upon walk-up-and-use S.DSs for shared-
goal tasks. Wak-up-and-use SLDSs should require no prior training of ther users and therefore
impose the drictest usability requirements on their developers. By contrast, mastery of SLDSs for
routine or professond use may be acquired through trid-and-error and written documentation even
if those systems have redively poor usability characteristics. However, if users cannot use walk-
up-and-use SLDSs more or less immediately, they are not likely to come back to try again. SLDSs
for shared-god tasks, or task-oriented SLDSs, may be contrasted with conversationa SLDSs. The
former are built to hep users perform one or severa particular and well-circumscribed tasks on the
assumption that user and sysem have the unique and shared god of accomplishing the task as
efficiently as possble. Tasks include, eg., reserving concert tickets, doing home banking over the
telephone, getting travel information, accessng email over the phone, getting connected to the right
person in a company, obtaining information on car insurance, and providing information on the
amount of water and dectricity used during a cetan period. In fact, dl exiging commercid
sysems ae shared-god sysems. Red conversationd sysems which are able to conduct
meaningful didogue with ther users without being condrained by the shared god and common
task assumptions, remain research chdlenges so far. Within the limitations just noted, the best
practice issues described below would seem to gpply up to and including systems of a complexity
well beyond current commercid applications (cf. Fgure 1). The increesng use of speech in
multimodal and naturd interactivity contexts is only patialy addressed (in Section 2.2). Findly, in
what follows, the user is the sysem end-user who interacts with an SLDS in order to carry out a
partticular task, and not, for indance, the syssem developer, the sysem mantaner or the SLDS
deployer.

2. Human factors best practiceissuesfor SLDSs

The deven human factors best practice issues for SLDSs to be presented are aimed to carve the
complex space of SLDS usability into intuitively satisfactory and complementary segments. The
issues are otherwise of severd different types. Two issues, i.e. 21 on specification and 2.11 on
evauation, concern particular aspects of the SLDS deveopment and evauaion process itsdf.
These issues are orthogond to the rest of the best practice issues and include the latter within their
scope. Most issues address requirements on particular SLDS components, including 2.3 on speech
recognition, 2.4 on user input language, 2.5 on output speech, 2.6 on output language, and 2.7, 2.8.,
2.9 and 2.10 on various aspects of interaction optimisation wrt. which the didogue manager has a
centrd role. Findly, 22 on when to use speech highlights the fact that speech is not dways the
right choice of moddlity for interactive systems.

Even if the best practice issues are hypotheticdly cdamed to cover dl mgor human factors
perspectives on SLDSs, ther presentation below is far from being exhaudive in the sense of
describing each issue as it pertains to the detalled development and evauation of any possble
SLDS. For one thing, too much is dready known about some of the conditions for SLDS usability.
All we can do about that within the limitations of this paper is to explan and exemplify the issues
involved and refer the reader to more extensive presentations esewhere, for instance on the DISC
SLDSs Best Practice webste (http:/mwww.disc2.dk). Typicdly, those presentations elaborate and
further illusrate how to address a paticular issue. Secondly, there are dill many unknowns in the
area of human factors for SLDSs, some of which are pointed out below.

2.1 Full specification of human factors

It is essentid to gather knowledge about the needs, expectations, behaviour (linguisic and
otherwise) and environment of the intended users of an SLDS. This must be done as earlly as
possble in the specification and design process by involving representative users from the target
user group(s). The collected information contributes to deciding which human factors requirements
to include in the requirements specification. Useful sources for information collection are, eg.,
observation of human-human communication on the same task whenever possble, dte vigts which
help understand organisationd and collaborative requirements, and interviews with prospective
users. Given the fact that SLDSs must be carefully crafted to fit their users, lack of early user
involvement could essly lead to a demand for subgtantia redesign later or, even worse, to a find
system which the intended users do not want to use. How to involve the users from early on is well
described in the literature, see, eg. (Bernsen, Dybkjag and Dybkjaa 1998, Williams and Cheepen
1998) and the DISC Best Practice website (http://www.disc2.dk). Some best practice advice on user
involvement from an evauation point of view is provided in Section 2.11.

Important human factors to consider a an early stage include, i.a, ease of use (for ingance, you
don't have to remember particular keywords and procedures), the capability of the sysem to
perform a didogue which is natura (just express yoursdlf to get the task done), flexible (you don't
need a system conformant plan to get the task done) and robust (if something goes wrong the
sydem helps you getting back on track) within its domain, avalability of sufficdent meta
communication facilities (it is easy to correct migtakes), sufficent task domain coverage (the
system shares your conception of the task), awareness of the needs of different user groups,
contextud factors in the user's organisation and in the deployment of the SLDS. In fact, dl of the
best practice issues presented in Sections 2.2 through 2.11 should be consdered in the specification
phase as regards their relevance for the sysem to be designed. Issue relevance should be made
operationd by spdling out the implications for the SLDS's behaviour and by including those
implications in the specification. For indance, given an on-line database of ar flight schedules and
fares from a paticular arline company, it has now become rdativey draghtforward to build
SLDSs enabling users to book extremely complex round-trips. However, some users will want to
use a different carrier; others will be prepared to revise their time schedule to obtain reduced fares;
and yet others will want to know if other carriers could provide a Smpler or fagter itinerary. If such
preferences are not discovered and taken into account from early on, most users are likely to find
the SLDS untrusworthy and likdy to offer overly expendve fares and unnecessarily complex
itineraries.

Among the human factors liged in the preceding paragreph, some of the mogt difficult usgbility
Issues concern contextud adequacy, i.e. adequacy of the full set of contextual factors which
contribute to making an SLDS acceptable to its users. These factors remain insufficiently explored
both as regards which they are and as regards ther individua contributions to user satisfaction. It is
possble that contextua factors, such as service improvements or economica benefits are among
the mogt important factors influencing users satisfaction with SLDSs. Service improvement may
consgt in longer opening hours so that users can cal the service around the clock and on week-ends
rather then during norma office hours only. Another sarvice improvement may be the introduction
of a brand new service which makes life easer because, eg., customers can cdl the sysem instead
of having to go to some far-away office. Also, the fact that SLDSs can help avoid phone queues to
overloaded human agents is likedy to be fdt as an important improvement of efficiency. And
SLDSs replacing voice response systems may make life easier for some mobile phone users who do
not have to switch the phone back and forth between their ears and their eyes, as well as for people
having rotation did phones which cannot be used with touch-tone systems. Economical benefits
will usudly aso be postively recaved by users. Usars may, eg., pay less for a savice if they e
an SLDS ingtead of calling a person, or the SLDS may be set up on a free phone number.

Once the reevant and operationdised human factors have been included in the requirements
specification, their feasbility must be subjected to early evauation together with al other parts of
the specification. However difficult this may be to do in any formd way, it is essentid to good
development practice to cary out a sysematic and explicit evauation of whether the gods and
condraints included in the requirements specification are reasonable, sufficient, feasble and non
contradictory. For example, it is important to assess whether the resources available in the project
in tems of time money, manpower and expertise, are sufficient to develop the sysem as
specified, and whether the specified system is likdly to satiSfy actua user needs and preferences. If
the requirements specification is not properly evauated and discrepancies turn up later between

technicd feaghility and usability requirements, this may result in re-specification and redesign, or,
even worsg, in an SLDS in which insufficient hacks damage the system’ s usability.

All evdudion criteria to be used in evauating the find sysem, including those rdating to human
factors, should be included in the requirements specification. The evduation criteria dtae the
parameters which will be measured or otherwise evaluated and the results that should be achieved
for the find system to be acceptable. For the time being, there is no agreed set of human factors
evauation criteria (cf. Section 2.11). Neverthdess the definition, from ealy on during
development, of clear, rdevant and gppropriate evauaion criteria, and the continuous and
methodologicaly sound evauation of progress with reference to those criteria, is crucid to good
development practice. If the human factors evaduation criteria become invented and applied as the
project proceeds and no decisons are made up front concerning which criteria the find system or
component must satisfy, developers have little support in determining whether they are on the right
track when observing the emerging behaviours of the system and its components.

2.2 Speech istheright thing

The large mgority of task-oriented spoken language didogue systems use speech-only in ther
interaction with the usars. This is changing, however, and we will be seeing an increasng number
of sysems which combine spoken humansysem didogue with other moddities for information
representation and exchange. Examples are: speech input and output combined with graphics output
(Wyard, Appleby, Kaneen, Williams and Preston 1995), combined speech and pen input (Oviatt
1997), combined speech and mouse pointing gesture input (Roth, Chuah, Kerpedjiev, Kolojgchick
and Lucas 1997). More examples can be found in (Benoit et d. 2000). For instance, static graphics
output is useful for rendering information which is too lengthy for being presented through speech,
auch as long ligs of flight connections, or which is virtudly impossble to present through speech,
such as the detalled contents of images. It is a well-known fact that speech-only interaction is not
gopropriate for dl tasks and gpplications, and the same is true for any paticular moddity
combinaion which includes speech input and speech output for spoken didogue with the users. To
mention a ample example, few users would be happy if they had to speek adoud their pin code to
the bank teller machine in the street.

In other words, before embarking on an SLDS development project developers should attempt to
make sure that spoken input and output, possibly combined with other input/output modalities, is an
appropriate moddity choice for the planned gpplication. If the chosen modalities are inappropriate,
chances are hat the users ether will not accept the gpplication or will refran from usng some of
the modditiesit offers

There are severad gpproaches to the issue of moddity choice. One gpproach to ensuring an
appropriate choice of moddities is to use common sense. Common sense, however, is far from
being infdlible. The reason is the sheer complexity of the problem of moddity choice. One sudy
found that the choice of whether or not to use spoken interaction depends on how the following
vaiables are ingantiated by the planned gpplication: generic task (eg. text editing), speech act (e.g.
dam), user group (eg. the blind), interaction mode (e.g. wirdess device), work environment (e.g.
public spaces), generic system (eg. ATMs), performance parameter (eg. speed, efficiency),
learning parameter (eg. no learning overhead) and cognitive property (eg. reduction in visud
workload) (Bernsen 1997). Change the ingtantiation of one of these variables, and the modalities to
be used in the application may change mmpletedly. Common sense is not dways a good predictor of
the complex interrdaionships involved. A second agpproach is scientific experimentation which
often serves to complement and correct common sense. However, because of the complexity of the
modality choice problem, developers cannot count on the existence of experimenta results which
can be unambiguoudy applied to the design cases a hand. And it is often difficult or impossble to
cary out eaborate controlled experiments as pat of gpplication development projects. A third
option is for the developer to consult a recently developed experimenta design support tool called
SMALTO which supports early design reasoning about whether or not to use speech. The tool was
developed in DISC, cf. (http://mww.disc2.dk/tools, Bernsen and Luz 1999). SMALTO is based on
the observation that a limited number of moddity propeties, such as that “speech is
omnidirectiond”, have proved to provide powerful support to reasoning about modaity
appropriateness. SMALTO interactively shows how those modality properties work in evauating
particular clams about the use of speech in a large variety of gpplications. The modadlity properties
we currently use can be found at the DISC SLDSs Best Practice website.

2.3 Good speech recognition

From the user’s point of view, good speech recognition means that the system rarely gets the user’s
gpoken input wrong or fails to recognise what the user just said. Recognition success, as perceived
by the user, not only depends on recogniser quaity but also on how other parts of the SLDS handle
the user's input. Good recogniser qudity neverthdess remains the key factor in meking users
confident that the system will successfully get whet they say.

Wak-up-and-use systems are likey to encounter a large variety of users who, moreover, may
address the sysem in highly different environments. The speech recogniser, therefore, and
depending on more specific information on its intended users and environments of interaction, must
be trained to recognise a variety of didects and accents, speskers of different gender, age and voice
quality, spesking with a low or a loud voice, in noisy or quiet environments, and with varying
channe quality. All or most recognisers must cater for both femae and mde voices, and sometimes
for children’s voices as well. As to the environment, an over-the-phone taxi ordering applicetion,
for ingtance, is likey to demand more robustness to background noise than an gpplication which
will be addressed mogt of the time by users spesking from their office. In many cases, speech from
different speskers may overlap. The telephone line itsdf holds omnipresent and time-variant noise
as well. Additional sources of variaion are the way in which users hold the spesker rdative to the
mouth and the extralinguistic noise speskers may produce, such as tongue clicks (Waibel 1996,
Baggia, Gerbino, Giachin and Rullent 1994). Based on information on the target user population
and their environments of interaction, the early design specification should make clear which of the
above issues the recogniser must be able to handle.

It has often been observed that SLDSs do not need perfect speech recognition because they benefit
from one of the fundamenta characteristics of human didogue, i.e. that erors committed may
automatically become the subject of the didogue itsdf until they have been corrected. Moreover,
usng language models and other condraints, many SLDSs are able to remove fase recogniser
hypotheses about what the user just said. This is why, say, 82% recognition success can lead to
+90% transaction success for the system as a whole. Despite the important points made by these
obsarvations, it remans true that too many misrecognitions may cause users to turn down the
system. If users are misunderstood or not understood by the system they may initiste meta
communication to correct the problem (see 2.10). However, they may dso smply repesat the
utterance which the system did not recognise, or they may rephrase ther input in a more complex
manner, thereby making matters worse. The fact that the sysem has some form of meta
communication capability will not necessarily solve the problem. Moreover, meta-communication
comes a aprice, aswe shall see.

It remains a nontrivid task to optimise speech recognition for the application a hand. Adequate
information on users and environments is essentid input to the sdection and cregtion of training
data To assess the quality of the system’s recognition capabilities prior to running the full system,
gpeech recognition accuracy may be tested on the recogniser with users from the target group(s).

2.4 Natural user speech

Speaking to an SLDS should fed as easy and naturd as possble. It does not help the user that the
sysem’s speech recognition is perfect in principle if the input vocabulay and grammar expected
from the user are not the ones which the user is likdy to use and thus cannot be understood. This
makes the question of which kind of input language the system should accept and understand, a
very important one. The point is not that dl but fully conversationd SLDSs are unnaurd. Rather,
wha conditutes naturd user speech is a relaive, not an absolute notion. Depending on, i.a, the
task and users experience, what is “naturd” input language may vary condderably. In principle, an
SLDS only needs to be able to discriminate if the user does or does not produce a sound in response
to a system question. For most tasks, however, such ‘grunt detect’ systems will be perceived as
highly unnaturd. Moreover, it is hardly feesble for indance, to build a tran time-table information
sysem this way. This system a least needs to be adle to recognise train dations, dates, times and
indications as to whether the customer wants to go to, or depart from, a paticular sation. In
addition, many tasks require that users have a least some of the didogue initiative and sometimes
mogt of it as in, eg.,, emal and cdendar handling (see 2.8). Whenever the user has the initiative,
longer utterances are to be expected compared to answers to closed system questions (see 2.6). In
other words, the task imposes cetan minima condrants on how smpligic the user's input
language could be.

What is being experienced as naturd input speech is dso highly rdative to the sysem’s output
phrasing. For example, if a flight ticket reservation system asks “Where does the journey sart?’,
some users might naturdly reply by providing the name of the town or suburb in which they live
rather than the name of an arport, which is likely to conditute a problem for the recogniser. Re-
phrasng of the sysem’'s question might remove the problem. In the same way, lengthy and/or
overly polite sysdem utterances are likdy to invite smilar linguisic behaviour on the pat of the
user, thereby burdening input recognition and understanding unnecessarily. The system’'s output
language thus can (indeed, should) be used to control users input language so tha the latter
becomes managegble for the sysem whilst Hill feding naturd to the user (cf. 2.6). If the minimd
congraints imposed by the task are stisfied and the system’s output language adequately controls
the user's input language, usars may wel fed that the didogue is naturd even if they ae not
inclined to engage in lengthy conversation.

Andyss of data from sysem dmulaions, quesionnares and interviews is a ussful tool for
obtaining information on usars input language and on what they perceive as being naturd input
language.

2.5 Good output voice quality

From the user’s point of view, good SLDS output voice quality means that the system’s speech is
clear and intdligible, does not demand an extra ligening effort, is not particularly noise sengtive or
digorted by clicks and other extraneous sounds, has naturd intonation and prosody, uses an
gppropriate spesking rate, and is pleasant to listen to (Karlsson 1999). Taken together, these
requirements are difficult to meet today.

Types of output speech
There are three main types of output speech: recordings of entire system utterances, concatenation
of recorded words and phrases, and synthesised speech.

The highet and most human-like output voice qudity is obtained by playing recordings of entire
sysem utterances. In most cases, however, it & practicaly impossble to record al the utterances
which the sysem may have to produce, such as dl posshle utterances concerning bank account
satements. An dternative is to record and dtore utterance parts, i.e. words and phrases, and
concatenate te parts on-line to produce the needed output utterances. The price paid for this gain in
flexibility is that it is very difficult to get intonation completely right in concatenated Speech
because the intonation of a particular word changes according to thet word's position in a sentence.
It is usudly too cumbersome to record al possible intonations and, even if this were to be done,
difficult to control the correct concatendtion in context. Moreover, it is difficult to make the ‘seams
between the concatenated parts completely continuous and avoid any kind of digtortion. These are
the reasons why concatenated speech tends to exhibit more or less unnatura prosody. Still,
concatenated speech can be made clear, intdligible and reasonably pleasant to listen to. However, a
problem common to al forms of recorded speech is that the person whose voice has been recorded
should be available at dl times for new recordings, should these become necessary! It can easily be
impossible to find a second voice which is indiginguishable from the origind. This is a didinct
disadvantage particularly in systems whose output repertoire needs regular updating, such as events
information SLDSs.

The mog flexible way of generating output Speech is through text-to-speech (TTS). TTS makes it
easy to add new words and phrases because no recordings of a particular spesker are involved.
Although steady progress is being made, TTS qudity remains modest with regard to dlarity,
intelligibility, prosody and pleasantness. Moreover, TTS systems tend to have a series of particular
limitations, such as in the pronunciation of proper names or phrases borrowed from other
languages.

Concatenated speech is the most frequently used type of speech in today’s SLDSs. For wak-up-
and-use systems in paticular, TTS may smply be too difficult to undersand for infrequent users.
Even if, inevitably, the lack of perfection of today’s output speech technology may adversdy affect
users evauation of the system, there is one advantage. It is that too ratural output speech, such as
in recordings of entire system utterances, may suggest to users that the system is far more cgpable
and humant-like than it actudly is encouraging them to address the sysem in a way which is more
conversationa and talkative than it can handle.

Type of voice

The type of output voice chosen is likey to affect users perception of the sysem as a whole. In
particular, and together with the qudity of the speech output (cf. above), the voice type has a mgor
influence on how pleasant users find the “system’s voice’. If recordings are to be used it must be
decided whether or not to involve a professona spesker. Even if it may be desrable to use a
professona spesker to obtain good voice quality, experiments have shown that users sometimes
prefer non-professond voices. Smilarly, it must be decided whether to use a mde or a femde
voice, whether the voice should be deep or high, and what the spesking rate should be. Men appear
to prefer femde voices in many cases whereas women appear to be more indifferent. A dow
gpesking rate may be useful for interaction with novices or in noisy environments whilst a faster
speaking rate may be appropriate for experienced users. Many issues concerning voice type are ill
open. For example, how will the sysem’'s ability to change spesking dyle or express emation
through prosody affect the interaction with users? These are becoming red issues since some TTS
systems dready have those ahilities.

In order to gather input on user preferences with respect to the system’s output voice, representative
users of the sysem under development may be asked to ligen to different “system voices’ and
provide feedback on which one they prefer and what they like and didike about each of them.

2.6 Adequate output phrasing

SLDSs spesk to ther users about many different topics in order to advance the task, provide
feedback, engage in meta-communication, welcome the user or say goodbye, etc. Regardless of the
topic, the system should express itself co-operatively in order to maximise the likeihood that the
task is achieved as smoothly and efficiently as possble To facilitate successful interaction, the
sysem’'s output should be correct, rdevant and sufficiently informative without being over-
informative. Expressions should be clear and unambiguous, and language and, as far as possible,
terminology should be consstent and familiar to the user (Bernsen et d. 1998). Failure to provide
adequate (or co-operative) output phrasng may generate many different kinds of
miscommunication some of which could lead to interaction falure. A tool based on Cooperativity
Theory, CODIAL, has been developed in DISC to support the design of co-operaive system
didogue (Dybkjex 1999, hitp://www.disc2.dk/tools). The purpose of CODIAL is to help prevent
system miscommunication during early didogue desgn. The man idess ae explaned in this and
the following sections. For more details the interested reader is referred to the DISC SLDSs Best
Practice webdte. In addition to co-operdivity, this section discusses input control which was
briefly mentioned in Section 2.4.

Contents

It is crucid that the user can trust what the system says. Users have good reason for dissatisfaction
if the sysem provides fdse information on, eg., departure times, prices or meeting venues. tll,
this may happen, for instance if the database is not being properly updated.

Lack of rdevance of sysem output caused by, eg., misrecognition, will typicdly lead to meta
communication diglogue. The system's utterance may be pefectly rdevant given its interpretation
of what the user sad but totaly irrdevant given what the user actudly said. If, for instance, a user
has asked for information on tran connections between Ulm and Stuttgart and the system replies
“When do you want to go from Ulm to Coburg?’, then obvioudy the user will initiate some kind of
repair, such as “No, no, not to Coburg, to Stuttgart.”, which many systems will have difficulty
coping with.

Sysem output should be sufficiently informative. Otherwise, misunderstandings may occur which
are only detected much later during interaction, if a dl, or which, a bedt, lead to immediate
requests for daification by the user. A typicd example of information insuffidency is a sysem
which, when asked for a discount ticket on a certain departure on which no discount is available,
merely replies that discount is not possble without offering the user a normd fare for the same
departure. Conversdly, the sysem should not provide too much or overly verbose information. In
reponse, users may ether become inattentive or try to take the didogue inititive in ways which
the sysem cannot handle. And even atentive users are likely to forget lengthy messages. Also,
users may become confused about the discourse focus and what is the point of relevance, initiating
clarification meta- communication as a result.

Form and language

Sysem output must be clear and unambiguous. Unclarity naturdly leads to uncertainty and need
for darification. So does ambiguity if detected by the user. If undetected, as often happens, the
effects of ambiguity can be severe. If the user unknowingly sdlects a non-intended meaning of a
word or phrase uttered by the system, al sorts of things can go wrong. An example of multiple
ambiguity is a sysem which says that “Hight 658 will arive a 9”. As long as the user does not
know if this is am or pm and does not know if this is ariva according to the regular flight plan or
expected actua ariva time, the user would be advised to ask a few question before acting on the
information provided. To hep avoid ambiguity it is moreover, advissble to use the same
expressions for the same purposes throughout the dialogue.

Users prefer the sysem to spesk their native language in mogt applications. Just as importantly, the
system preferably should not use terms and expressons which are not familiar to most or al of its
usars. If the sysem mug do that, unfamiliar terminology should be explained either proactively
(before usars ask) or through adequate measures for clarification meta-communication. For
indance, a car sdes information sysem should be prepared to handle the darification meta
communication that will inevitably result (cf. 2.10).

Input control

It is important to redise that the sysem’s output language tends to have a massve priming effect
on the user’s language. Humans are extremely good a adapting (automaticaly, unconscioudy)
their vocabulary, grammar and syle to those of their didogue partner, even if the partner happens
to be an SLDS (Amdberti, Carbondl and Fazon 1993, Gustafson, Larsson, Carlson and Hellman
1997, Zoltan-Ford 1991). It is, therefore, crucia that the words and grammar used in system output
can be recognised and understood by the sysem itsdf. Smilaly, the sysem should have a
speeking style which induces users to provide input that is to the point and can be handled by the
system.

Closad system questions impose strong input language control. For instance, the system’s question
“Please date your city of departure’ is likely to dicit a one-word answer such as “Copenhagen”.
“When do you want to leave’ is a dightly more open question which will probably dicit longer
user input, such as an utterance containing a date, a date and a time, or a time. An entirdly open
question, such as “How may | hep you’, may invite any kind of user input much of which may be
difficult to handle for current SLDSs.

It may be dedrable to use a farly redrictive kind of output language in error handling Stuations
(cf. 210) and when interacting with novice usaers. For indance, rdatively closed system questions
or ligings of options may often serve to guide novice users through the didogue in a naturd way.
This is reaively easy to do for wdl-structured tasks where user and system share a modd of the
ub-tasks to be addressed and possibly in which order the sub-tasks should be dedt with. IlI-
structured tasks pose more chalenges but may, eg., be handied via menu-like structures (cf. 2.8).
To caer dso for expert usars who know exactly which input the system needs, the sysem may
accept not only an answer to the specific question it asks but other pieces of information as well.
For ingdance, when interacting with a tran information system which asks “Where do you want to
travd from”, it should be possble not only to answer this question but aso to provide more
complete information, such as “lI want to go from Copenhagen to Odense tomorrow morning
around eght o'clock”. This will soeed up the interaction for experienced usars while ill providing
guidance to novice users.

Depending on the task and the sysem’s output language, natura user input language may include
complex phenomena, such as cross-sentence co-reference, dlipds, discontinuous user input
involving large gaps in the sequence of didogue acts expected by the system, and indirect didogue
acts. Any such phenomenon, when condituting a naturd and frequently occurring part of the input,
hes to be ether handled by the sysem in a satisfactory way or eiminated through redesign of the
System'’ s outpt.

Exactly how terse or how polite the sysem’s output style should be depends on severd factors.
Terse system output will encourage users to use a terse dyle which is easer for the sysem to
handle than a style which is lengthy and conversationa. Furthermore, terseness speeds up task
performance and often appears to promote user satisfaction, in particular in case of repeated use of
the system. Politeness phrases may in such contexts be perceived as superfluous and contributing to
meking the didogue long-winded, see e.g. (Williams and Cheepen 1998). However, depending on,
i.a, the users (firgd-time users or expert users), their culture, ad the organisation which owns the

sysgem (and which may want a friendly and polite sysem), some amount of politeness may be
desirable.

Lack of co-operativity in the sysem’'s output may be diagnosed from the occurrence of
communication problems in smulated or red user-system interaction. Data capture and anayss is
cogly, however, especidly because large amounts of data may be needed for triggering most of the
communication problems which the system is likely to cause. To reduce cog, and to help identify
those kinds of lack of cooperativity which are less likdy to cause communication problems,
CODIAL may be used both for walk-throughs through the interaction design prior to data capture
and for the actuad data andyss. Interaction data analyss is needed to assess the efficiency of the
input control strategies adopted. User contacts through interviews and questionnaires are good
means for obtaining early input on how users experience the system’ s outpuit.

2.7 Adequate feedback

Adequate feedback is essentid for users to fed in control during interaction. The user mugt fed
confident that the system has understood the information input in the way it was intended, and the
user must be told which actions the system has taken and what the system is currently doing. Only
by being told can the user take corrective action when needed. Moreover, telling the user is not
adways good enough — the user mugt be told in such a way that the user notices what the system
says It follows that it may be a good thing for SLDSs to provide severd different kinds of
feedback to their users. It dso follows that the task of ensuring adequate feedback can be a difficult
one. We distinguish between process feedback and information feedback.

Process feedback

When the system processes information received from the user and hence may not be spesking for
a while, process feedback keeps the user informed on what is going on. Many SLDSs may benefit
from offering this kind of feedback. A user who is uncertain about what the system is doing, if
anything, is liable to produce unwanted input or to believe that the system has crashed and decide
to hang up. Moreover, the uncertainty itsef is likdy to affect negatively the user's satisfaction with
the system. Process feedback can be provided in many different ways. Right now, the fidd is in a
date of experimentation in which different kinds of process feedback are being tested. The best
process feedback needs not be spoken words or phrases describing what the system is doing but
could congist in grunts or ehm’s, tones, melodies, or appropriate earcons.

Information feedback

Feedback on the system’s understanding of what the user just said helps ensure that, throughout the
didogue, the user is left in no doubt as to what the system has understood. The same effect of
building the user’'s trust in the system is produced by feedback on the actions taken by the system,
paticularly if those actions cannot be perceived by the user, such as when a money trander has
been made from one account to ancother. All SLDSs therefore need to provide information
feedback. A user who is uncertain as to what the sysem has understood, or done, is lidble to
produce unwanted input and to react negatively to the way the system works.

Information feedback can be provided in different ways. In many cases, the sysem may smply
cary out the action requested by the user in a way which the user can perceive, such as reading
adoud a requested voice mail, thus demondrating that it has understood the user’s input. This way
of providing feedback is not dways possble. Some actions cannot be perceived by users during
interaction with the sysem, as in the money trandfer example above. Also, severa pieces of
information may be required from the user (eg. when booking a flight ticket). As long as the
system does not have dl the information it needs it must ask for the missng parts before taking
further action. Moreover, even when the sysem does have the information it needs for teking a
certain action, such as providing information about a train departure, it may not be clear to the user
that the system actudly is taking about the train the user wants unless adequate feedback is
provided. In such cases the system should make the user aware of what it has understood. The
difficulty lies in finding the best way to do this Condder the didogue snippets in Figure 2. The
sysem misrecognises ‘Hamburg' as ‘Hanover’. However, the user has no chance of spotting the
error from the answer shown in S2a A better solution is the answer shown in S2b in which the
sysem explicitly mentions the city names and the date it has understood. This offers the carefully
ligening user the posshility of detecting the eror and initiating meta-communication in order to
correct the mistake (U2b). However, such implicit information feedback does not dways work
because users may not listen carefully enough. If the intended users turn out to be prone to ignore
the implicit feedback, the more burdensome explicit feedback drategy shown in S2c might be

10

consdered. Experience has shown that the drategy illustrated in S2c is more robust than the
drategy illustrated in S2b (Sturm, den Os and Boves 1999). Explicit feedback does not come for
free, however. The price to pay for usng explicit feedback is that user and system have to spend
more didogue turns to solve the task.

U1: When isthe firg morning train from Frankfurt to Hamburg tomorrow morning?

S2a: 5.35 AM.
S2b: Thefirg train from Frankfurt to Hanover on 3rd May 1999 leaves at 5.35 AM.
S2c: Y ou want to go from Frankfurt to Hanover tomorrow morning?

U2a: Many thanks. Goodbye.
U2b+c: [Initiates correction.]

Figure 2. Different ways of providing information feedback. U is user and Sis system.

The amount and nature of the information feedback the system should provide also depends on
factors such as the cost and risk involved in the user-system transaction. Obvioudy, feedback on
bank transfers or travel bookings are more critica than feedback on which email the sysem should
be reading to the user next. Even travel information, if the user gets it wrong, can have serious
consequences for that user. Current opinion on information feedback during transactions of medium
to high sgnificance probably is that the sysem developer shoud prefer the safer among the two
most relevant feedback options. Building the user’s trust and confidence in the system is more
important to user satifaction than reducing the average number of turns needed to complete the
transaction.

For important transactions, an additiond safeguard is to give the usr a summary of the agreed
transaction a the end of the didogue, preceded by a request that the user listens to it carefully. If
the request is not there, the user who has dready ignored crucid feedback once, may do so again.

2.8 Adequate system interaction

An SLDS may handle one or severd tasks, and tasks may be well-gructured or ill-structured. In
generd, the system should make the user undersgand clearly which task(s) the system can carry out
and how they are structured, accessed and addressed. To support natural interaction, an SLDS
needs a reasonable choice of didogue initigtive, an appropriate didogue structure, sufficient task
and domain coverage, and sufficient reasoning capabilities.

Dialogue initiative and structure

Spoken human-human didogue is prototypicdly mixed-initiative, the partners in didogue
negotiating and exchanging didogue initigive as they go dong. In fact, however, many task-
oriented didogues tend to be directed primarily by one of the interlocutors. This fact can be
exploited when desgning humansysem interaction. Usars may even fed satisfied with less
initiative when interacting with an SLDS than when taking to a person as long as the didogue
initigtive didribution fits the task(s) the sysem and the user must solve together, and provided that
the rest of the best practice issues proposed in this paper are properly attended to. Thus, system
directed dialogue can work well for tasks in which the sysem smply requires a series of specific
pieces of information from the user, in particular if the user is new to the sysem. The robust way to
do this is for the sysem to ask for one piece of information a a time until the task has been
completed. The price to pay & that more experienced users are likely to miss the opportunity for
providing al the necessary pieces of information in a sngle utterance. To satisfy experienced users,
the sysem may have to be able to cope with the larger packages of input information which are
natura to these usars. In a amilar way, the rigid sysem directed menu-based approach, which is
often used when severd unrelated tasks are avalable, may be softened by, eg., the introduction of
pseudo sub-menus. Pseudo sub-menus enable the experienced user to access al functions directly
by spesking the right command without having to be guided through the series of sub-menus which
are available to the inexperienced user.

In principle, a (mainly) user directed dialogue is as much of an aberation from mixed initiaive
didogue as is the (manly) sysem directed didogue. Currently, user directed didogue would seem

11

to be appropriate primarily for applications designed for experienced users who know how to make
themselves understood by the system. Unless supported by screen graphics or other additiona
modalities, inexperienced users are likely to address the system in ways it cannot cope with.

Mixed initiative dialogue, i.e. a mixture of sysem and use initiaive, is often both desrable ad
technicdly feasble. At some points in the didogue it may be appropriate that the system takes the
inititive to guide the user, obtain missing information, or handle an error. At other points, such as
when the user needs information from the system, is dready familiar with the system or wants to
correct an error, it is appropriate for the user to take theinitiative.

As long as we cannot build fully conversationd systems, didogue designers may have to impose
some kind of dructure onto the didogue, determining which topics (or sub-tasks) could be
addressed when. It is important that the structure imposed on the didogue is naturd to the user,
reflecting the user’s intuitive expectations, especidly in system directed didogue in which the user
is not supposed to interfere with the didogue dructure. Unnaturd didogue sructure will often
cause usersto try to take the initiative in ways which the system cannot cope with.

Task and domain coverage

Sufficient task and domain coverage is dso crucid to naurd interaction. Even if unfamiliar with
SLDSs, usars normdly have rather detailed expectations to the information or service which they
should be able to obtain from the system. It is important that the syslem meet these expectations. If,
for some reason, the system is not able to perform a certain sub-task which users would expect the
sysem to handle, this has to be dated clearly. Even then, user satidfaction is likey to suffer. For
ingtance, if two people want to travel together on a roundtrip, it is standard for human travel agents
to book for both of them in pardld, making sure that they get adjacent sests on dl legs of the
itinerary. Users are therefore likely to expect the system to be able to do just that. If the system has
been designed to book for one person a a time, users must be told explicitly that this is the way the
system works. And they may not like the consderable amount of extra didogue turns they have to
go through in order to book what to them is a smple twosome journey.

Reasoning

Contextudly adequate reasoning is a classcad problem in the design of naturd interaction. Even
when users have been appropriately primed to expect a rather primitive interlocutor, they tend to
assume that the system is able to perform the bits and pieces of reasoning which humans are able to
do without thinking and which are insgparable parts of naurd didogue about the task. Typicaly,
therefore, SLDSs must incorporate both facts and inferences about the task as well as generd world
knowledge in order to act as adequate interlocutors. If, for ingance, the task has a tempora
dimenson, the sysem must be able to infer which dae the user is taking about when saying
“tomorrow” or “on Friday”. Defining which kinds of reasoning the sysem must be capable of is
pat and parcd of defining the system’s task and domain coverage and subject to smilarly difficult
decisons on task ddimitation (cf. the preceding paragraph). For ingtance, whereas it may be
obvious that the sysem should be able to define an absolute date based on the user’s “tomorrow”, it
may be less obvious that the system should be able to do the same for “Chrigmas Day”,
“Pentecost” or even “The opening day of Wimbledon™.

It is possble to get rough ideas on initiaive didribution, users modes of the task, and how to
delimit the domain from studying recorded human-human didogues on tasks Smilar to those which
the sysem is intended to cover. However, the recordings should only be consdered possble
darting points. In particular, as task complexity grows, developers are likely to find themselves
forced to adopt more redtrictive task delimitations and impose a more rigid didogue structure than
those which they found in the human-human didogues. Having done that, the resuting interaction
model needs early testing and evaudion. In particular, if the developer is into relatively high task
complexity compared to the state of the art, early testing is strongly recommended (see 2.11).

2.9 Sufficient interaction guidance

Sufficient interaction guidance is essentid for users to fed in control during interaction. Interaction
guidance can be paticularly hard to get right in speech-only, wak-up-and-use SLDSs. Speech is
ingppropriate for providing lengthy and complex “user marud” indructions up front for firg-time
users (cf. 2.6 on over-informativeness and verbosty). Moreover, & any given time some users will
dready be familiar with the sysem whereas others will be novices. Issues to congder include cues
for turn-teking vs. barge-in; the background and experience of the target users;, help facilities, and
highlighting of nontobvious system behaviour, such as that the sysem does not lisen when it

12

gpesks, needs particularly reduced forms of user input, or handles the task in some non-standard
manner.

Cues for turn-taking and barge-in

Barge-in or tak-over means that users can interrupt the systlem whenever they wish and il expect
to be recognised and understood, even when the system is speaking or is processing recent nput.
Barge-in dlows the user to speed up the interaction, for instance by interrupting aready familiar
indruction prompts in order to get on with the task. It is known, however, that many users do not
interrupt the system even when they know they can @ so. On the other hand, people are used to
taking an unfilled pause as a cue to dart peaking. Thus, if the sysem does not dlow barge-in, it
must provide clear cues for turn-taking, making it completely clear to the user when to spesk and
when to refrain from spesking because the system does not listen. Cues can be explicit, such as the
up-front ingruction “Please pesk after the tong’ followed by a tone each time it is the usar’s turn
to speek, or implicit, such as when the system stops talking.

A magjor problem is the slence which may occur when the system darts processing the user’s input
(cf. 2.7 on process feedback). This slence could be taken to indicate that, e.g., the syslem did not
get wha was sad or that the sysem needs additiona informetion, and that the user should Start
spesking again. If the sysem is 4ill ligening whilst processing the previous user input, the user's
new input may cause problems for the didogue manager which has to generate an appropriate
response to digoint pieces of user input. And if the sysem is not ligening any more, important
input could be lost in cases when users do not merdly repeet themsalves.

User background and experience

It is ussful to diginguish between four types of usar: sysem expert/doman expert, system
expert/domain novice, sysem novice/ldomain expert and sysem novice/domain novice. An SLDS
needs not support al four groups, of course. If the target user group is domain and system experts
only, then, obvioudy, the system is not a wak-up-and-use system. In that case, the developer may
be able to impose drict task performance order, a relaively large number of mandatory command
keywords, and ample use of written user indructions. If the primary target group is sysem novice
users, ortline indructions and other help information is likely to be needed. This need tends to
increase even further when the system novices are dso doman novices who need explanaion of
domain technicalities, such aswhat is a“green departure’.

Given the rdaive smplicity of current SLDSs wak-up-and-use users may quickly become
(system) experts. This means that interaction should be supported and fecilitated for both system
novices and system experts. Specid shortcuts for expert interaction can be a good solution. Such
shortcuts include introductions which can be <kipped easly through barge-in or explicit de-
sdection, pseudo sub-menus (cf. 2.8), and progressve hdp mechanisms which are only being
provided when needed. An example of progressive help is thet a prompt for experts is followed by
progressive help for the inexperienced user. The system may sy, eg., “Which service?’ followed
by “The services avalable are ...” in case the user does not Start spesking right after the firg
prompt.

Help and other kinds of guidance

Generd and explicit indructions on what the system can and cannot do and how to interact with it
may be provided in a spoken introduction which can be repeasted on request or be skipped by
experienced users. In fact, most speech-only SLDSs drictly need some up-front introduction to
guide interaction. We dready mentioned the when-(not)-to-speak issue above. Just as importantly,
the sysem should be pefectly clear about the task(s) which the user can accomplish through
interaction. For indance, users build very different expectations from being told (@ “Hight
information, how may | help you? and (b) “This sarvice provides informetion on British Airways
domestic flight departures and arrivals. How may | help you?’

The firg few words uttered by the syssem should not express indructions. Reather, the sysem might
sy, eg., “Hedlo, you are connected to a spoken didogue sysem ...” in order to leave users just
enough time to redise that they are connected to the right service and are spesking to a sysem. The
longer the spoken introduction itsdlf, the less likdy it is that the user will remember and be able to
follow the ingructions provided. Moreover, some indructions may not be feasble for users a dl,
such as to remember to use a series of particular command keywords in order to navigate the
sysem. If the indructions needed by the wak-up-and-use user are too many to be presented in the
system’s introduction, some of them may be relocated for presentation at particular points duing
interaction and only when needed. This diminates the burden of having to memorise ingructions

13

which are provided long before they are needed, if they are needed a dl for some variety of the
task.

Providing usgful hdp mecheniams is a difficult interaction design task. Help may be an implicit
pat of the didogue, such as the progressve hep mentioned above, be avalable on request by
saying “help’; or be automdicaly enabled if the user is having problems repegtedly, for ingtance in
being recognised. In this case the sysem may, eg., propose how to express input or inform the user
on what can be said.

Hardcopy ingtruction, such as quick reference cards, may be used to inform users on what the
system can and cannot do, what its didogue dtructure is, and to ingruct them on how to interact
with it, for ingance through sample didogues and a lig of avalable commands. In generd, this
drategy for interaction guidance primarily makes sense if most users are known in advance and will
be udng the sysem repeatedly. Hardcopy ingdruction should never be the prime source of
information because it tends to get lost, not to be a hand when needed, or be obsolete. Walk-up-
and-use users often present the additiond difficulty that it is impossible to know who they are and
hence impossible to provide them with written hardcopy ingtructionsin the first place.

This section has argued tha barge-in is usudly an advantage for the user. However, more research
Is needed on the potential problems caused by barge-in. SLDSs have great potentid for facilitating
interaction for experienced users whilst keeping the novices supported as well. A cdear system
introduction is normdly essentid to adequate novice support. It is when this introduction is
insUfficdent thet the redly intricste problems of providing dynamic hdp begin, in particular in
speech-only SLDSs. For the time being, solutions to those problems should be carefully evaluated
by exposing them to interaction with representative users.

2.10 Adequate error handling

Even if the best practice issues 2.1 through 2.9 above have been taken into account carefully during
gpecification, desgn and implementation, the SLDS and its usars will gill make errors during
didogue. In human-system interaction, error prevention is far preferable to error correction, and
what those best practice issues do is to hep prevent erors from occurring during interaction.
Humans are good at error correction during spoken diadogue, which is why most errors are handled
seamlesdy in shared-god humanthuman communication. Also in this respect, however, current
SLDSs are far inferior to ther human interlocutors. This is why adequate error handling remains a
difficult issue in SLDS devdopment. Intuitively, this issue can be decomposed dong two
dimensons (a) dther the system initiates error-handling meta-communicetion or the user initiates
error-handling metacommunication. And (b) when eror-handling meta-communication is
initiated, it is either because one paty has faled to hear or understand the other or because what
was heard or understood is fase, or it is because what was heard or understood is somehow in need
of claification. We diginguish, therefore, between system or user initiated repair meta
communication and system or user initiated clarification meta-communication.

Repair meta-communication

System-initiated repar meta-communication is needed whenever the sysem dther did not
undersand or was uncertain that it understood correctly what was sad, for instance due to low
recognition confidence. In such cases, the system must ask for repetition, ask the user to spesk
louder or modify the way the input is being expressed in other specified ways, or tell the user what
it did understand and ask for confirmation or correction. The more precisely this can be done, the
better. For ingance, if the system bdieves that the usr sad ether “Hamburg” or “Hanove”, it
should tell the user just that instead of broadly asking the user to repest.

A common occurrence when the system has made clear that it did not (fully) understand what was
sad, is that the user Smply repeats the utterance which caused the problem, leaving the system in
exactly the same uncomprehending Stuation as before. In such cases, the sysem may either try
agan, choose to fal back on a human operator, close the didogue, or, better, stat graceful
degradetion, i.e. carry on by changing the level of interaction into a sSmpler one. Depending on the
problem a hand and the sophidtication of the system, this @n be done in different ways, such as by
aking focused questions, asking for re-phrasng, asking a smple yesno question, or asking the
user to spell acrucid word.

Usars may smply fal to respond. Then the system should make the user aware that it is expecting
their input, for instance by repesting its latest utterance.

Usars may dso be understood by the system to have said something which is fase and hence needs
to be corrected. This is often smple to do, as when the system replies “You have ddeted the emalls

14

from yedterday” to the user's “Read the emails from yesterday”. Sometimes the system has reason
to believe that the user has misunderstood what the system said. A symptom of misunderstanding is
that the usr’s input is meaningless in the task context. For instance, the user may be heard as
responding “London” to a question about return date. A Smple strategy in such cases is for the
system to repeat the question. In the — rather blatant - example just given, most users can be
expected to correct themsdves on being asked the same quedtion again. This dSrategy will not
aways work, however. For ingtance, if the system only discovers a user’s misunderstanding later in
the dialogue, more elaborate recovery drategies are likely to be needed, such as back-tracking to
the point where the misunderstanding occurred. Also, some systems would not consider the user’s
“London” as a misunderstanding but rather as a topic shift. On that assumption and depending on
the task higtory, the system might respond, e.g. “Y ou want to travel from London?’.

Just as dl SLDSs need a drategy for recovering from fasehood and from falure to hear or
understand what the user just said, dl SLDSs need a drategy for heping the user recover from
fdsehood and from falure to hear or understand what the system just said. User-initiated repair
meta-communication can be desgned in severd different ways. Idedly, users should judt initiate
repair the same way they would have done in didogue with a human. Some sysems have been
desgned to dlow that, but with varying success, the problem being that users may express ther
corrections in many different ways (Carlson 1996). Other systems require the user to use
gpecificaly desgned keywords for this purpose, such as “Repeat” and “Correct” (Bernsen et 4.
1998). Keywords are smpler for the system to handle than unrestricted user speech. The problem is
that usng keywords for correction is unnatura and hence difficult for the user to remember. A third
approach is the “erase™ principle For indance, if the sysem through misrecognition gets
“Frankfurt to Hanover” ingtead of, as the user said, “Frankfurt to Hamburg”, the user smply has to
repeat “Frankfurt to Hamburg” until the system has received the message (Aust et d. 1995). Whilst
this solution may work wdl for low-complexity tasks, it may be difficult to keep track of in high-
complexity tasks And it will not work if the sysem cannot recognise input on any sub-task dl the
time but only on a selected subset.

A smple case is when the user detects that the system did not hear anything. It is often sufficient
for the user to repeat the input, possibly a bit louder, because if the system does not hear anything
this will typicaly be because the user spoke while the sysem did not listen or because the user did
not speak loudly enough relative to the microphone.

It sometimes hgppens that usars change their minds during the didogue with the sysem. In
practice, these cases are Smilar to casesin which the system has misunderstood the user.

Clarification meta-communication

Very roughly spesking, darification meta-communication is more difficult to design for than repair
meta-communication, and usar-initiatled danification meta-communication is more difficult to
design for than systemrinitisted darification meta-communication. Some exceptions to these rules
are that it can be hard to desgn for user misunderstandings (see above) and that it can sometimes
be rdaively draightforward to anticipate and desgn for user darification needs (see below).
Claification istypicdly of theform “1 hear what you say, but what, exactly, do you mean?’
System-initiated darification meta-communication is needed when the user’s input is incongsent,
ambiguous or underspecified. In such cases, the sysem must ak for claification, for instance by
pointing out that the incondstent expresson “Thursday Sth" may be dther “Thursday 8th" or
“Friday 9th", asking whether the ambiguous “9 o'clock” is am or pm, or asking a which time of
day the user wantsto leave to the underspecified “1 want to depart on Tuesday.”.

User-initiated darification meta-communication is needed whenever the system produces
incongstent or ambiguous utterances, or uses terms with which the user is not familiar. In humant
human conversation, these problems are easly addressed by asking questions such as “What do
you mean by green departure?’ or “Do you mean scheduled ariva time or expected ariva time?’.
Unfortunately, handling such questions is difficult for SLDSs and the system developers might not
have discovered dl the potentid problems in the firg place. If they had, they could have tried to
prevent dl or mogt of the problems from occurring through adequate output phrasing or other
means. As argued in 2.6 above, smooth didogue requires that al ambiguities, inconsstencies and,
in most SLDSs, terms unknown to users are avoided rather than having to be clarified on the user’s
initistive. There are exceptions, however. Due to the nature of their domain, some tasks inherently
require facilities for claifying the terminology used. For ingtance, when interacting with a used
cars information system, some users will necessarily be wondering what the system is taking about
as soon as it mentions ABS brakes or on-board GPS systems. It is not a practicad option for the

15

system to explain dl of those domain terms as it goes aong. This would be intolerable for the users
who are familiar with the domain.

Mot SLDSs need abilities for handling system and user-initiated repair, and many SLDSs need
gystemrinitiated clarification abilities We have described a saies of repar and claification
mechanisms above. Even if these mechanisms are in some sense generd, i.e independent of
particular domains, tasks and users, there is no smple decison procedure for deciding which of
them to indude in a paticular SLDS. Ther genedity notwithganding, sensble decisons very
much depend on factors such as domain, task complexity, user population and peculiarities of user
behaviour which can only be discovered through interaction data andysis.

2.11 Sufficient and timely evaluation of human factors

Human factors evaduaion is necessary for measuring progress towards the human factors gods
which the system has to meet. Centra issues in human factors evauation incdlude: when to evduate,
the type of evduation to use, the purpose of evduation, the nature of the system verson undergoing
evauaion (eg. mock-up, Smulation, implemented system), wha to evauate, which and how many
usersto involve, and how to do the evauation.

Types and purpose of evaluation

Evaduation can be quantitative or quditative, subjective or objective. Quantitative evaluation
condsts in quantifying some parameter through an independently meaningful number, percentage
etc. which in principle dlows comparison across sysems. Qualitative evaluation condgts in
esimating or judging some parameter by reference to expet standards and rules. Subjective
evaluation conggts in judging some parameter by reference to users opinions. Objective evaluation
produces subject-independent parameter assessment. Idedly, we would like to obtain quantitative
and objective progress evaluation scores for usability which can be objectively compared to scores
obtained from evaluation of other SLDSs This is wha has been atempted in the PARADISE
framework based on the clam that tak success and didogue cost are potentidly relevant
contributors to user satisfaction (Walker, Litman, Kamm and Abdla 1997). However, many
important human factors issues cannot be subjected to quantification and objective expert
evauation is sometimes highly uncertain or non-existent.

The purpose of evduation may be to detect and andyse desgn and implementation errors
(diagnodtic evduation), measure SLDS peformance in terms of a set of quantitative and/or
quditaive parameters (performance evauation), or evauae how wdl the sysem fits its purpose
and meets actud user needs and expectations (adequacy evaduation), cf. (Hirschmann and
Thompson 1996, Gibbon, Moore. and Winski 1997, Bernsen et a. 1998). The latter purpose is the
more important one from a human factors point of view dthough the others are rdlevant as well.
Which type of evauation to use and for which purpose, depends on the evaduation criterion which
is being applied (see below). Other genera references to natura language systems evduation are
(EAGLES 1996, Gaizauskas 1997, Sparck Jones and Galliers 1996).

When to evaluate and methods to use

Usability evauation should stat as early as possble and continue throughout development. In
generd, the earlier desgn errors are being identified, the easer and chegper it is to correct them.
Different methods of evauation may have to be agpplied for evauating a paticular parameter
depending on the phase in the lifecycle in which evaduation takes place. Early desgn evduation can
be based on mock-up experiments with users and on desgn wak-throughs Wizard of Oz
amulations with representative task scenarios can provide vauable evaduation data When the
sysem has been implemented, controlled scenario-based tests with representative users and field
tests can be used. Recorded didogues with the (Ssmulated) system should be carefully analysed for
indications that the users have problems or expectations which exceed the capabilities of the
sysem. Human-system interaction data should be complemented by interviews and questionnaires
to enable assessment of user satisfaction. If users are interacting with the prototype on he bass of
scenarios, there are at least two issues to be aware of. Firgly, scenarios should be designed to avoid
priming the users on how to interact with the sysem. Secondly, sub-tasks covered by the scenarios
will not necessarily be representative of the sub-tasks which rea users (not using scenarios) would
expect the system to cover.

The find test of the system is often caled the acceptance test. It involves red users and must satisfy
the evauation criteria defined as part of the requirements specification (cf. 2.1).

16

User involvement

In generd, representative users from the target user group(s) should be involved in evaduation from
early on. The developers themsdves can certainly discover many of the usability problems with the
ealy desgn ad implementation, especiadly when supported by date-of-the-art usability standards,
evauation criteria and design support tools. The problem is that they know too well how to interact
with the sysem in order to avoid credting interaction problems which the sysem cannot handle.
For the time being, there is no dterndive to involving the target users in dl or most system
evaduation phases and for most usability evauation purposes. This is cosly and complex to do.
However, the data andyss which is crucid to bendfiting from trids with the sysem, is as
necessary after trids with developers as it is after trids with representative users. Even the early
involvement of representative users is no guarantee that the system will ultimately produce
aufficient user stisfaction. For one thing, the data distribution they generste may not maich the
behaviour of the users of the system, once inddled. For another, experimenta user trids are
different from red dtudions of use in which time, money and trust are redly a stake. For these
reesons, and paticulaly when introducing SLDSs which are innovaive in some respect, it is
necessry to prepare and budget for fidd trids with the implemented sysem as wel as for the
subsequent data andysis and fine-tuning of the system. Usars who are “only” involved in a test can
be much more indifferent to, or more podtive towards, a syssem with poor usability characteristics
than red users who have something to looseif the system lets them down (Bernsen et d. 1998).

What to evaluate

As remaked earlier, there is a present no consensus as to which human factors evaduation criteria
to use. However, the best practice issues discussed in the present paper may serve to generate a
comprehendve lig of usability evaluation criteria which would appear mandatory for evauaing the
usability of dl or most SLDSs. Even if not dl of the criteria below are included in the requirements
specification, they ae ill useful for evduating how usdble the sysgem is and what progress is
being made during its development. The eva uation criteriawe propose are:

1. Modality appropriateness

2. Input recognition adequacy

3. Naturdness of user speech rdative to the task(s) including coverage of user vocabulary and
grammar

4. Output voice quaity

5. Output phrasing adequacy

6. Feedback adequacy

7. Adequecy of didlogueinitiative reative to the task(s)

8. Naturaness of the did ogue structure relative to the task(s)

9. Sufficiency of task and domain coverage

10. Sufficiency of the system’ s reasoning capabilities

11. Suffidency of interaction guidance (information about system capabilities, limitations and
operations)

12. Error handling adequacy

13. Sufficiency of adaptation to user differences

14. Number of interaction problems (Bernsen et d. 1998)

15. User satisfaction

The developers options wrt. al criteria except 14 were discussed under the best practice issues

above. Criterion 14 refers to the cooperdivity guiddines which form the bass of CODIAL

introduced in Section 2.6. Mot criteria are quditative. Severd are subjective or include subjective

judgement when no expert consensus can be found in the date-of-the-art. In particular, user

satisfaction is subjective throughout. Neverthdess, in view of how much remans to be discovered

about how the behaviour of SLDSs affect the saisfaction of their users, subjective evauaion

remains a cornerstone in SLDS evaluation. Space does not permit discusson of user questionnaires
and interviews. Generd references are (Anastas 1988, Miller 1984, Ericsson and Simon 1985).

17

How to evaluate

Evduation, induding usability evauation, is nontrivid and cannot be explaned smply by dating
what to evauate (cf. the list of evaluation criteria above) and what the developers options are (the
bulk of this paper). One of the mog difficult questions in evauation probably is how to do it
properly. In DISC we have developed a template which supports consistent and detailed description
of each evdudion criterion. The template includes the following issues what is being evauated
(e.g. feedback adequacy), the system part evduated (e.g. the dialogue manager), type of evauation
(eg. quditative), method(s) of evauation (eg. controlled user experiments), symptoms to look for
(eg. user claificaion quedtions), life cycle phasy(s) (eg. smulation), importance of evaudion
(eg. crucid), difficulty of evduation (eg. easy), cost of evauation (eg. expensve), and support
tools (eg. SMALTO), see (http://mww.disc2.dk/tools). The idea is that the combined set of (i)
design options for SLDS usdbility, (i) humen factors evauation criteria, and (iii) template-based
characterisation of each criterion, will provide developers with sufficient information for proper
evauation of their SLDSs.

3. Conclusion

In this paper, we have attempted to provide a brief best practice overview of what to consider when
specifying, designing, developing and evaduating ussble spoken language didogue systems. We
have argued that the DISC gpproach to best practice in the development and evauation of SLDSs is
on the right track towards developing a comprehensve undersanding of SLDS usability, i.e. to
gart from a thorough description of the issues which are faced by today’s developers and the
solutions they might consder, followed by a liging of the evauation criteria they should apply
together with a guide to practicd evauaion. Within this framework, many isues reman
unresolved or even unaddressed. Deployment usability issues are ill poorly understood as are the
ussbility issues aisng from multimodd and naturd interactive agpplications which integrate
speechronly SLDSs into larger systems. Usability questionnaire design remains poorly understood.
The same agpplies to culturd differences in the perception of SLDS usability. Findly, we are aware
that, even though issues to do with SLDS user adaptation have been discussed in Sections 2.6, 2.8
and 2.9 above, we have not addressed the issue of user profiles which is of particular importance to
non-walk-up-and-use systems.

References
Anagtas, A. 1988. Psychological testing. New Y ork, Macmillan.

Amalberti, R., Carbondl, N. and Fazon, P. 1993. User representations of computer systems in
humar computer speech interaction. International Journal of Man-Machine Sudies 38: 547-566.

Augt, H., Oerder, M., Seide, F. and Steinbiss, V. 1995. The Philips automatic train timetable
information systlem. Speech Communication 17: 249-262.

Baggia, P., Gerbino, E., Giachin, E. and Rullent, C. 1994. Spontaneous speech phenomena in
nave-user interactions. Proceedings of TWLTS, 8th Twente Workshop on Speech and Language
Engineering, Enschede, The Netherlands, 37-45.

Benoit, C., Martin, J. C, Pdachaud, C., Schomaker, L. and Suhm, B.: Audio-Visud and
Multimoda Speech Systems. Article to gppear in Gibbon, D., Moore, R. and Winski, R. (Ed.).
2000. Handbook of Standards and Resources for Spoken Language Systems, 2nd Edition. Mouton
de Gruyter, Berlin, New Y ork.

Bernsen, N. O. 1997. Towards a tool for predicting speech functiondity. Speech Communication
23: 181-210.

Bernsen, N. O., Dybkjaa, H. and Dybkjaa, L. 1998. Designing Interactive Speech Systems. From
First Ideasto User Testing. Berlin, Springer.

18

Bernsen, N. O. and Luz, S. 1999. SMALTO: Speech functionality advisory tool. DISC Deliverable
D2.9. http:/Aww.disc2.dk/tools.

Bossemeyer, R. W. and Schwab, E. C. 1991. Automated dternate billing services a Ameritech:
Speech recognition and the human interface. Speech Technology Magazine 5, 3, 24-30.

Carlson, R. 1996. The dialogue component in the Waxholm syslem. Proceedings of TWLT11, 11th
Twente Workshop on Didogue Management in Naturd Language Systems, Enschede, The
Netherlands, 209-218.

Cole R. A., Maiani, J,, Uszkoreit, H., Zaenen, A. and Zue, V. W. (Editorid Board), Varile, G. and
Zampolli, A. (Managing Editors). 1996. Survey of the State of the Art in Human Language
Technology. Sponsors: National Science Foundation, Directorate XlII-E of the Commission of the
European Communities, Center for Spoken Language Understanding, Oregon Graduate Indtitute.
URL: http://mwww.cse.ogi.edwW/CSLU/HL Tsurvey/.

Dybkjaer, L. 1999. CODIAL, a tool in support of cooperative didogue design. DISC Deliverable
D2.8. http://ww.disc2.dk/tools.

EAGLES. 1996. Evduation of Naturd Language Processng Systems. Fina Report, EAGLES
Document EAG-EWG-PR2. Copenhagen, Center for Sprogteknologi.

Ericsson, K. and Simon, H. 1985. Verba reports as data. Psychological Review, 67, 215-251.

Faillenschmid, K., Williams, D., Dybkjag, L. and Bernsen, N. O. 1999. Draft proposal on best
practice methods and procedures in human factors. DISC Déliverable D3.6. http://ww.disc2.dk.

Franco, V. 1993. Automation of operator servicesat AT& T. Proceedings of Voice' 93, San Diego.

Gaizauskas, R. (Ed.) 1997. Proceedings of the SALT Club Workshop on Evaluation in Speech and
Language Technology, Sheffidd.

Gibbon, D., Moore, R. and Winski, R. (Eds) 1997. Handbook of standards and resources for
spoken language systems. Mouton de Gruyter, Berlin, New Y ork.

Gudtafson, J, Larsson, A., Carlson, R. and Hellman, K. 1997. How do system questions influence
lexica choicesin user answers. Proceedings of EuroSpeech’ 97, Rhodes, 2275-2278.

Heid, U., Bernsen, N. O., Dybkjag, L. and van Kuppevelt, J. 1998. Current practice in the
devdopment and evauation of spoken language didogue sysems DISC Deliverable D1.8.
http://mww.disc2.dk.

Hirschmann, L. and Thompson, H. S. 1996. Overview of evduation in speech and naturd language
processing. In Cole et a. 1996, Section 13.1.

Karlsson, |. 1999. Draft proposa on best practice methods and procedures in speech generation.
DISC Deliverable D3.3. http://iwww.disc2.dk

Miller, G. 1984. Experimental Design and Statistics. London, Methuen.
Nielsen, J. 1993. Usability engineering. New Y ork, Academic Press.

Oviatt, S. 1997. Multimoda interactive maps Dedgning for human peformance. Human-
Computer Interaction, Vol.12, No. 1& 2: 93-129.

19

Peng, C. and Vitd, F. 1996. Der sprechende Fahrplan. Output 10, 92-96.

Roth, S. F.,, Chuah, M. C., Kerpedjiev, S, Kolgjgchick, J. and Lucas, P. 1997. Towards an
information visudization workspace: Combining multiple means of expresson. Human-Computer
Interaction, Vol.12, No. 1&2: 131-185.

Sparck Jones, K. and Galiers, J 1996. Evauating naturd language processng systems. Lecture
Notesin Artificid Inteligence 1083. Berlin, Springer.

Sturm, J,, den Os, E. and Boves, L. 1999. Issues in spoken didlogue systems: Experiences with the
Dutch ARISE system. Proceedings of ESCA Workshop on Interactive Dialogue in Multi-Modal
Systems, Kloster Irsee, Germany, 1-4.

Waibd, A. 1996. Interactive trandation of conversationa speech. IEEE Computer, 41-48.

Wadker, M. A., Litman, D. J, Kamm, C. A. and Abdla, A. 1997. Evaduating interactive dialogue
sysgems. Extending component evauation to integrated system evauation. Proceedings of the
ACL/EACL Workshop on Spoken Dialog Systems, Madrid, 1-8.

Williams, D. M. L. and Cheepen, C. 1998. Just spesk naturdly: Desgn for naturaness in
automated spoken dialogues. Proceedings of CHI 98, ACM Press, 243-244.

Wyard, P., Appleby, S, Kaneen, E., Williams, S. and Preston, K. 1995. A combined speech and
visud interface to the BT busness cataogue. Proceedings of the ESCA Workshop on Spoken
Dialogue Systems, Vigsg, Denmark, 165-168.

Zoltan-Ford, E. 1991. How to get people to say and type what computers can understand. Int.
Journal of Man-Machine Studies (34), Academic Press Ltd, 527-547.

20

