
 1

Usability Issues in
Spoken Language Dialogue Systems

Laila Dybkjær and Niels Ole Bernsen
Natural Interactive Systems Laboratory, University of Southern Denmark

Science Park 10, 5230 Odense M, Denmark
laila@nis.sdu.dk, nob@nis.sdu.dk

Abstract
Whilst spoken language dialogue systems (SLDSs) technology has made good progress in recent
years, the issue of SLDS usability is still lagging behind both theoretically and in actual SLDS
development and evaluation. However, as more products reach the market and competition
intensifies, there is growing recognition of the importance of systematically understanding the
factors which must be taken into account in order to optimise SLDS usability. Ideally, this
understanding should be comprehensive, i.e. include all major human factors perspectives on
SLDSs, and exhaustive, i.e. describe each perspective as it pertains to the detailed development and
evaluation of any possible SLDS. This paper addresses the requirement of comprehensiveness by
decomposing the complex space of SLDS usability best practice into eleven issues which should be
considered by developers during specification, design, development and evaluation. The discussion
of each issue is aimed to support the developer in building SLDSs which are likely to generate user
satisfaction, which are perceived to be easy to understand and control, and which enable smooth
user-system interaction. Based on the best practice issues discussed, criteria for evaluating SLDS
usability are proposed. Several limits to our current understanding of SLDS usability are
highlighted.

1. Introduction
Spoken language dialogue systems (SLDSs) have been on the market for about a decade and have
an even longer history in research laboratories. An SLDS is an interactive system which conducts
spoken dialogue with its users. To do so, the SLDS must not only recognise what the user says but
also interpret it and generate an appropriate spoken response. Even the simplest kind of SLDS
needs, at least, speech recognition in order to match the acoustic input signal to its vocabulary of
words or phrases, dialogue management in order to decide what to do in view of the input message
received, and output generation in order to produce a spoken response to the user. This includes the
ability to produce an appropriate response when the user’s input is not being recognised, or, in
more complex SLDSs, when the recognised input does not make sense in context. Thus, more
complex SLDSs need language understanding in order to understand what the recognised input
means in context.
The first commercial SLDSs were simple speaker-independent, single word recognition systems
with a vocabulary of a few words (Bossemeyer and Schwab 1991, Franco 1993). Even very simple
SLDSs which merely understand the words “yes” and “no” and their equivalents in a speaker-
independent way can do useful tasks, such as automating collect call telephone services. Today’s
commercial SLDSs span a much wider range. There is now a rich variety of small-vocabulary
systems, cf. the examples at http://www.speechworks.com/demos/demos.htm and
http://www.nuance.com/index.htma?SCREEN=demos. The most advanced commercial systems
have a vocabulary of several thousand words; understand speaker-independent spontaneous speech;
do complex linguistic processing of the user’s input; handle shifts in initiative; have quite complex
dialogue management abilities including, e.g., reasoning based on the user’s input, consultation of
the recorded history of the dialogue so far, and graceful degradation of the dialogue when faced
with users who are difficult to understand; carry out linguistic processing of the output to be
generated; solve several tasks and not just one; and robustly carry out medium-length dialogues to
provide the user with, for instance, train timetable information on the departures and arrivals of
trains between hundreds of cities. Examples of advanced commercial systems are described in , e.g.
(Aust, Oerder, Seide and Steinbiss 1995, Peng and Vital 1996). The following is an English
translation of a dialogue with the Philips system.

 2

S1: Hello. You are connected to a spoken dialogue system prototype. This is the automatic
train timetable information. You may inquire about train connections to one thousand German
stations. From where to where would you like to go?
U1: From Siegen to Cologne.
S2: When would you like to go from Siegen to Cologne?
U2: On 29th June.
S3: At which time would you like to leave on Saturday 29th June?
U3: At nine o’clock.
S4: So you would like to leave at nine o’clock in the morning?
U4: Yes.
S5: There is the following connection with express train 3312 from Siegen at 9:09, arrival in
Cologne at 10:39. Would you like to have the connection repeated?
U5: No.
S6: Would you like another connection?
U6: No.
S7: Then I wish you a pleasant trip.

Figure 1. A dialogue with the Philips train information system. U is user and S is system.

A huge amount of work has been invested in the component technologies that are integral to
SLDSs. Major results of these efforts are that speech recognisers and synthesisers can now be
bought as off-the-shelf software. The language processing and dialogue management parts of SLDS
technology are less mature but platforms are emerging which facilitate the building of relatively
simple language processing and dialogue management modules for SLDSs. Examples of such
platforms and environments are the CSLU Toolkit (http://cslu.cse.ogi.edu/toolkit/) which is freely
available, SpeechMania (http://www.speech.philips.com/ud/get/Pages/05fr.htm) from Philips and
NLSA (http://www.unisys.com/marketplace/nlu/) from Unisys both of which are commercial
software. Multimodal SLDSs are gaining ground. Such systems process user input other than, and
in addition to, speech, such as lip movements, facial expression or gesture, and/or generate output
in addition to speech, such as animated lips and faces, gesture, written text, images, non-speech
sound etc. (Benoit, Martin, Pelachaud, Schomaker and Suhm 2000).
Whilst SLDSs technology has made good progress — even if much still remains to be done — the
issue of SLDS usability remains an area with as many questions as there are solid answers. Far less
resources have been invested in human factors for SLDSs than in SLDS component technologies.
There has been surprisingly little research in important user-related issues, such as user reactions to
SLDSs in the field, users’ linguistic behaviour, or the main factors which determine overall user
satisfaction. Similarly, human factors have often been neglected in SLDS development and
evaluation. However, there seems to be growing recognition that usability is as important as, and
partly independent of, the technical quality of any SLDS component and that quality human factors
constitute an important competitive parameter.
In general terms, a usable SLDS must satisfy user needs which are similar to those which must be
satisfied by other interactive systems. Thus, what users need are SLDSs with which they are
generally satisfied in the overall context of use and which they feel are easy to understand and
interact with. Interaction should be smooth rather than bumpy and error-prone, and the user should
feel in control throughout the dialogue with the system. It is the task of the SLDS developer to meet
those user needs considered as overall human factors design goals. However, SLDSs are very
different from more traditional interactive systems whose human factors aspects have been
investigated for decades, such as systems controlled through graphical user interfaces involving
screen, keyboard and mouse. Perhaps the most important difference is that speech is perceptually
transient rather than static. This means that the user must pick up the output information provided
by the system the moment it is being provided or else miss it altogether. It also means that the user
has no way of inspecting the interface prior to interaction. If the interface is not self-evident all the
way through the dialogue it must be learnt by trial-and-error through repeated interaction, which is
bad news for the casual walk-up-and-use user. Secondly, the processing (recognition, language
understanding, dialogue management) of spoken input remains difficult to design and error-prone
in execution, which is why SLDSs must be crafted with extreme care to ensure that users do not
produce spoken input which the system is incapable of handling.

 3

Building on human factors results achieved in the European DISC project (http://www.disc2.dk) on
best practice in the development and evaluation of SLDSs (Failenschmid, Williams, Dybkjær and
Bernsen 1999) we propose that, for the time being, the overall design goals for creating usable
interactive SLDSs mentioned in the preceding paragraph may be systematically pursued by
focusing on a comprehensive set of eleven usability issues which include all major human factors
perspectives on SLDSs. Each best practice issue provides a focal point for optimising SLDS
usability during development and evaluation. Some of the issues may appear rather obvious, such
as the need for quality speech recognition. Given the comprehensiveness requirement, however,
quality speech recognition will have to be included among the best practice issues as a matter of
course. Partial obviousness notwithstanding, we are not aware of similar attempts to systematically
describe the usability issues which must be faced by today’s SLDS developers. In fact, DISC found
that SLDS development projects tend to select and apply but a small subset of the evaluation
criteria to be described in Section 2.11 below (Heid, Bernsen, Dybkjær and van Kuppevelt 1998).
To focus the paper within the space available, we focus upon walk-up-and-use SLDSs for shared-
goal tasks. Walk-up-and-use SLDSs should require no prior training of their users and therefore
impose the strictest usability requirements on their developers. By contrast, mastery of SLDSs for
routine or professional use may be acquired through trial-and-error and written documentation even
if those systems have relatively poor usability characteristics. However, if users cannot use walk-
up-and-use SLDSs more or less immediately, they are not likely to come back to try again. SLDSs
for shared-goal tasks, or task-oriented SLDSs, may be contrasted with conversational SLDSs. The
former are built to help users perform one or several particular and well-circumscribed tasks on the
assumption that user and system have the unique and shared goal of accomplishing the task as
efficiently as possible. Tasks include, e.g., reserving concert tickets, doing home banking over the
telephone, getting travel information, accessing email over the phone, getting connected to the right
person in a company, obtaining information on car insurance, and providing information on the
amount of water and electricity used during a certain period. In fact, all existing commercial
systems are shared-goal systems. Real conversational systems which are able to conduct
meaningful dialogue with their users without being constrained by the shared goal and common
task assumptions, remain research challenges so far. Within the limitations just noted, the best
practice issues described below would seem to apply up to and including systems of a complexity
well beyond current commercial applications (cf. Figure 1). The increasing use of speech in
multimodal and natural interactivity contexts is only partially addressed (in Section 2.2). Finally, in
what follows, the user is the system end-user who interacts with an SLDS in order to carry out a
particular task, and not, for instance, the system developer, the system maintainer or the SLDS
deployer.

2. Human factors best practice issues for SLDSs
The eleven human factors best practice issues for SLDSs to be presented are aimed to carve the
complex space of SLDS usability into intuitively satisfactory and complementary segments. The
issues are otherwise of several different types. Two issues, i.e. 2.1 on specification and 2.11 on
evaluation, concern particular aspects of the SLDS development and evaluation process itself.
These issues are orthogonal to the rest of the best practice issues and include the latter within their
scope. Most issues address requirements on particular SLDS components, including 2.3 on speech
recognition, 2.4 on user input language, 2.5 on output speech, 2.6 on output language, and 2.7, 2.8.,
2.9 and 2.10 on various aspects of interaction optimisation wrt. which the dialogue manager has a
central role. Finally, 2.2 on when to use speech highlights the fact that speech is not always the
right choice of modality for interactive systems.
Even if the best practice issues are hypothetically claimed to cover all major human factors
perspectives on SLDSs, their presentation below is far from being exhaustive in the sense of
describing each issue as it pertains to the detailed development and evaluation of any possible
SLDS. For one thing, too much is already known about some of the conditions for SLDS usability.
All we can do about that within the limitations of this paper is to explain and exemplify the issues
involved and refer the reader to more extensive presentations elsewhere, for instance on the DISC
SLDSs Best Practice website (http://www.disc2.dk). Typically, those presentations elaborate and
further illustrate how to address a particular issue. Secondly, there are still many unknowns in the
area of human factors for SLDSs, some of which are pointed out below.

 4

2.1 Full specification of human factors

It is essential to gather knowledge about the needs, expectations, behaviour (linguistic and
otherwise) and environment of the intended users of an SLDS. This must be done as early as
possible in the specification and design process by involving representative users from the target
user group(s). The collected information contributes to deciding which human factors requirements
to include in the requirements specification. Useful sources for information collection are, e.g.,
observation of human-human communication on the same task whenever possible, site visits which
help understand organisational and collaborative requirements, and interviews with prospective
users. Given the fact that SLDSs must be carefully crafted to fit their users, lack of early user
involvement could easily lead to a demand for substantial redesign later or, even worse, to a final
system which the intended users do not want to use. How to involve the users from early on is well
described in the literature, see, e.g. (Bernsen, Dybkjær and Dybkjær 1998, Williams and Cheepen
1998) and the DISC Best Practice website (http://www.disc2.dk). Some best practice advice on user
involvement from an evaluation point of view is provided in Section 2.11.
Important human factors to consider at an early stage include, i.a., ease of use (for instance, you
don’t have to remember particular keywords and procedures), the capability of the system to
perform a dialogue which is natural (just express yourself to get the task done), flexible (you don’t
need a system conformant plan to get the task done) and robust (if something goes wrong the
system helps you getting back on track) within its domain, availability of sufficient meta-
communication facilities (it is easy to correct mistakes), sufficient task domain coverage (the
system shares your conception of the task), awareness of the needs of different user groups,
contextual factors in the user’s organisation and in the deployment of the SLDS. In fact, all of the
best practice issues presented in Sections 2.2 through 2.11 should be considered in the specification
phase as regards their relevance for the system to be designed. Issue relevance should be made
operational by spelling out the implications for the SLDS’s behaviour and by including those
implications in the specification. For instance, given an on-line database of air flight schedules and
fares from a particular airline company, it has now become relatively straightforward to build
SLDSs enabling users to book extremely complex round-trips. However, some users will want to
use a different carrier; others will be prepared to revise their time schedule to obtain reduced fares;
and yet others will want to know if other carriers could provide a simpler or faster itinerary. If such
preferences are not discovered and taken into account from early on, most users are likely to find
the SLDS untrustworthy and likely to offer overly expensive fares and unnecessarily complex
itineraries.
Among the human factors listed in the preceding paragraph, some of the most difficult usability
issues concern contextual adequacy, i.e. adequacy of the full set of contextual factors which
contribute to making an SLDS acceptable to its users. These factors remain insufficiently explored
both as regards which they are and as regards their individual contributions to user satisfaction. It is
possible that contextual factors, such as service improvements or economical benefits, are among
the most important factors influencing users’ satisfaction with SLDSs. Service improvement may
consist in longer opening hours so that users can call the service around the clock and on week-ends
rather than during normal office hours only. Another service improvement may be the introduction
of a brand new service which makes life easier because, e.g., customers can call the system instead
of having to go to some far-away office. Also, the fact that SLDSs can help avoid phone queues to
overloaded human agents is likely to be felt as an important improvement of efficiency. And
SLDSs replacing voice response systems may make life easier for some mobile phone users who do
not have to switch the phone back and forth between their ears and their eyes, as well as for people
having rotation dial phones which cannot be used with touch-tone systems. Economical benefits
will usually also be positively received by users. Users may, e.g., pay less for a service if they use
an SLDS instead of calling a person, or the SLDS may be set up on a free phone number.
Once the relevant and operationalised human factors have been included in the requirements
specification, their feasibility must be subjected to early evaluation together with all other parts of
the specification. However difficult this may be to do in any formal way, it is essential to good
development practice to carry out a systematic and explicit evaluation of whether the goals and
constraints included in the requirements specification are reasonable, sufficient, feasible and non-
contradictory. For example, it is important to assess whether the resources available in the project
in terms of time, money, man-power and expertise, are sufficient to develop the system as
specified, and whether the specified system is likely to satisfy actual user needs and preferences. If
the requirements specification is not properly evaluated and discrepancies turn up later between

 5

technical feasibility and usability requirements, this may result in re-specification and redesign, or,
even worse, in an SLDS in which insufficient hacks damage the system’s usability.
All evaluation criteria to be used in evaluating the final system, including those relating to human
factors, should be included in the requirements specification. The evaluation criteria state the
parameters which will be measured or otherwise evaluated and the results that should be achieved
for the final system to be acceptable. For the time being, there is no agreed set of human factors
evaluation criteria (cf. Section 2.11). Nevertheless, the definition, from early on during
development, of clear, relevant and appropriate evaluation criteria, and the continuous and
methodologically sound evaluation of progress with reference to those criteria, is crucial to good
development practice. If the human factors evaluation criteria become invented and applied as the
project proceeds and no decisions are made up front concerning which criteria the final system or
component must satisfy, developers have little support in determining whether they are on the right
track when observing the emerging behaviours of the system and its components.

2.2 Speech is the right thing

The large majority of task-oriented spoken language dialogue systems use speech-only in their
interaction with the users. This is changing, however, and we will be seeing an increasing number
of systems which combine spoken human-system dialogue with other modalities for information
representation and exchange. Examples are: speech input and output combined with graphics output
(Wyard, Appleby, Kaneen, Williams and Preston 1995), combined speech and pen input (Oviatt
1997), combined speech and mouse pointing gesture input (Roth, Chuah, Kerpedjiev, Kolojejchick
and Lucas 1997). More examples can be found in (Benoit et al. 2000). For instance, static graphics
output is useful for rendering information which is too lengthy for being presented through speech,
such as long lists of flight connections, or which is virtually impossible to present through speech,
such as the detailed contents of images. It is a well-known fact that speech-only interaction is not
appropriate for all tasks and applications, and the same is true for any particular modality
combination which includes speech input and speech output for spoken dialogue with the users. To
mention a simple example, few users would be happy if they had to speak aloud their pin code to
the bank teller machine in the street.
In other words, before embarking on an SLDS development project developers should attempt to
make sure that spoken input and output, possibly combined with other input/output modalities, is an
appropriate modality choice for the planned application. If the chosen modalities are inappropriate,
chances are that the users either will not accept the application or will refrain from using some of
the modalities it offers.
There are several approaches to the issue of modality choice. One approach to ensuring an
appropriate choice of modalities is to use common sense. Common sense, however, is far from
being infallible. The reason is the sheer complexity of the problem of modality choice. One study
found that the choice of whether or not to use spoken interaction depends on how the following
variables are instantiated by the planned application: generic task (e.g. text editing), speech act (e.g.
alarm), user group (e.g. the blind), interaction mode (e.g. wireless device), work environment (e.g.
public spaces), generic system (e.g. ATMs), performance parameter (e.g. speed, efficiency),
learning parameter (e.g. no learning overhead) and cognitive property (e.g. reduction in visual
workload) (Bernsen 1997). Change the instantiation of one of these variables, and the modalities to
be used in the application may change completely. Common sense is not always a good predictor of
the complex interrelationships involved. A second approach is scientific experimentation which
often serves to complement and correct common sense. However, because of the complexity of the
modality choice problem, developers cannot count on the existence of experimental results which
can be unambiguously applied to the design cases at hand. And it is often difficult or impossible to
carry out elaborate controlled experiments as part of application development projects. A third
option is for the developer to consult a recently developed experimental design support tool called
SMALTO which supports early design reasoning about whether or not to use speech. The tool was
developed in DISC, cf. (http://www.disc2.dk/tools, Bernsen and Luz 1999). SMALTO is based on
the observation that a limited number of modality properties, such as that “speech is
omnidirectional”, have proved to provide powerful support to reasoning about modality
appropriateness. SMALTO interactively shows how those modality properties work in evaluating
particular claims about the use of speech in a large variety of applications. The modality properties
we currently use can be found at the DISC SLDSs Best Practice website.

 6

2.3 Good speech recognition

From the user’s point of view, good speech recognition means that the system rarely gets the user’s
spoken input wrong or fails to recognise what the user just said. Recognition success, as perceived
by the user, not only depends on recogniser quality but also on how other parts of the SLDS handle
the user’s input. Good recogniser quality nevertheless remains the key factor in making users
confident that the system will successfully get what they say.
Walk-up-and-use systems are likely to encounter a large variety of users who, moreover, may
address the system in highly different environments. The speech recogniser, therefore, and
depending on more specific information on its intended users and environments of interaction, must
be trained to recognise a variety of dialects and accents, speakers of different gender, age and voice
quality, speaking with a low or a loud voice, in noisy or quiet environments, and with varying
channel quality. All or most recognisers must cater for both female and male voices, and sometimes
for children’s voices as well. As to the environment, an over-the-phone taxi ordering application,
for instance, is likely to demand more robustness to background noise than an application which
will be addressed most of the time by users speaking from their office. In many cases, speech from
different speakers may overlap. The telephone line itself holds omnipresent and time-variant noise
as well. Additional sources of variation are the way in which users hold the speaker relative to the
mouth and the extra-linguistic noise speakers may produce, such as tongue clicks (Waibel 1996,
Baggia, Gerbino, Giachin and Rullent 1994). Based on information on the target user population
and their environments of interaction, the early design specification should make clear which of the
above issues the recogniser must be able to handle.
It has often been observed that SLDSs do not need perfect speech recognition because they benefit
from one of the fundamental characteristics of human dialogue, i.e. that errors committed may
automatically become the subject of the dialogue itself until they have been corrected. Moreover,
using language models and other constraints, many SLDSs are able to remove false recogniser
hypotheses about what the user just said. This is why, say, 82% recognition success can lead to
+90% transaction success for the system as a whole. Despite the important points made by these
observations, it remains true that too many misrecognitions may cause users to turn down the
system. If users are misunderstood or not understood by the system they may initiate meta-
communication to correct the problem (see 2.10). However, they may also simply repeat the
utterance which the system did not recognise, or they may rephrase their input in a more complex
manner, thereby making matters worse. The fact that the system has some form of meta-
communication capability will not necessarily solve the problem. Moreover, meta-communication
comes at a price, as we shall see.
It remains a non-trivial task to optimise speech recognition for the application at hand. Adequate
information on users and environments is essential input to the selection and creation of training
data. To assess the quality of the system’s recognition capabilities prior to running the full system,
speech recognition accuracy may be tested on the recogniser with users from the target group(s).

2.4 Natural user speech

Speaking to an SLDS should feel as easy and natural as possible. It does not help the user that the
system’s speech recognition is perfect in principle if the input vocabulary and grammar expected
from the user are not the ones which the user is likely to use and thus cannot be understood. This
makes the question of which kind of input language the system should accept and understand, a
very important one. The point is not that all but fully conversational SLDSs are unnatural. Rather,
what constitutes natural user speech is a relative, not an absolute notion. Depending on, i.a., the
task and users’ experience, what is “natural” input language may vary considerably. In principle, an
SLDS only needs to be able to discriminate if the user does or does not produce a sound in response
to a system question. For most tasks, however, such ‘grunt detect’ systems will be perceived as
highly unnatural. Moreover, it is hardly feasible, for instance, to build a train time-table information
system this way. This system at least needs to be able to recognise train stations, dates, times and
indications as to whether the customer wants to go to, or depart from, a particular station. In
addition, many tasks require that users have at least some of the dialogue initiative and sometimes
most of it as in, e.g., email and calendar handling (see 2.8). Whenever the user has the initiative,
longer utterances are to be expected compared to answers to closed system questions (see 2.6). In
other words, the task imposes certain minimal constraints on how simplistic the user’s input
language could be.

 7

What is being experienced as natural input speech is also highly relative to the system’s output
phrasing. For example, if a flight ticket reservation system asks: “Where does the journey start?”,
some users might naturally reply by providing the name of the town or suburb in which they live
rather than the name of an airport, which is likely to constitute a problem for the recogniser. Re-
phrasing of the system’s question might remove the problem. In the same way, lengthy and/or
overly polite system utterances are likely to invite similar linguistic behaviour on the part of the
user, thereby burdening input recognition and understanding unnecessarily. The system’s output
language thus can (indeed, should) be used to control users’ input language so that the latter
becomes manageable for the system whilst still feeling natural to the user (cf. 2.6). If the minimal
constraints imposed by the task are satisfied and the system’s output language adequately controls
the user’s input language, users may well feel that the dialogue is natural even if they are not
inclined to engage in lengthy conversation.
Analysis of data from system simulations, questionnaires and interviews is a useful tool for
obtaining information on users’ input language and on what they perceive as being natural input
language.

2.5 Good output voice quality

From the user’s point of view, good SLDS output voice quality means that the system’s speech is
clear and intelligible, does not demand an extra listening effort, is not particularly noise sensitive or
distorted by clicks and other extraneous sounds, has natural intonation and prosody, uses an
appropriate speaking rate, and is pleasant to listen to (Karlsson 1999). Taken together, these
requirements are difficult to meet today.

Types of output speech
There are three main types of output speech: recordings of entire system utterances, concatenation
of recorded words and phrases, and synthesised speech.
The highest and most human-like output voice quality is obtained by playing recordings of entire
system utterances. In most cases, however, it is practically impossible to record all the utterances
which the system may have to produce, such as all possible utterances concerning bank account
statements. An alternative is to record and store utterance parts, i.e. words and phrases, and
concatenate the parts on-line to produce the needed output utterances. The price paid for this gain in
flexibility is that it is very difficult to get intonation completely right in concatenated speech
because the intonation of a particular word changes according to that word’s position in a sentence.
It is usually too cumbersome to record all possible intonations and, even if this were to be done,
difficult to control the correct concatenation in context. Moreover, it is difficult to make the ‘seams’
between the concatenated parts completely continuous and avoid any kind of distortion. These are
the reasons why concatenated speech tends to exhibit more or less unnatural prosody. Still,
concatenated speech can be made clear, intelligible and reasonably pleasant to listen to. However, a
problem common to all forms of recorded speech is that the person whose voice has been recorded
should be available at all times for new recordings, should these become necessary! It can easily be
impossible to find a second voice which is indistinguishable from the original. This is a distinct
disadvantage particularly in systems whose output repertoire needs regular updating, such as events
information SLDSs.
The most flexible way of generating output speech is through text-to-speech (TTS). TTS makes it
easy to add new words and phrases because no recordings of a particular speaker are involved.
Although steady progress is being made, TTS quality remains modest with regard to clarity,
intelligibility, prosody and pleasantness. Moreover, TTS systems tend to have a series of particular
limitations, such as in the pronunciation of proper names or phrases borrowed from other
languages.
Concatenated speech is the most frequently used type of speech in today’s SLDSs. For walk-up-
and-use systems in particular, TTS may simply be too difficult to understand for infrequent users.
Even if, inevitably, the lack of perfection of today’s output speech technology may adversely affect
users’ evaluation of the system, there is one advantage. It is that too natural output speech, such as
in recordings of entire system utterances, may suggest to users that the system is far more capable
and human-like than it actually is, encouraging them to address the system in a way which is more
conversational and talkative than it can handle.

 8

Type of voice
The type of output voice chosen is likely to affect users’ perception of the system as a whole. In
particular, and together with the quality of the speech output (cf. above), the voice type has a major
influence on how pleasant users find the “system’s voice”. If recordings are to be used it must be
decided whether or not to involve a professional speaker. Even if it may be desirable to use a
professional speaker to obtain good voice quality, experiments have shown that users sometimes
prefer non-professional voices. Similarly, it must be decided whether to use a male or a female
voice, whether the voice should be deep or high, and what the speaking rate should be. Men appear
to prefer female voices in many cases whereas women appear to be more indifferent. A slow
speaking rate may be useful for interaction with novices or in noisy environments whilst a faster
speaking rate may be appropriate for experienced users. Many issues concerning voice type are still
open. For example, how will the system’s ability to change speaking style or express emotion
through prosody affect the interaction with users? These are becoming real issues since some TTS
systems already have those abilities.
In order to gather input on user preferences with respect to the system’s output voice, representative
users of the system under development may be asked to listen to different “system voices” and
provide feedback on which one they prefer and what they like and dislike about each of them.

2.6 Adequate output phrasing

SLDSs speak to their users about many different topics in order to advance the task, provide
feedback, engage in meta-communication, welcome the user or say goodbye, etc. Regardless of the
topic, the system should express itself co-operatively in order to maximise the likelihood that the
task is achieved as smoothly and efficiently as possible. To facilitate successful interaction, the
system’s output should be correct, relevant and sufficiently informative without being over-
informative. Expressions should be clear and unambiguous, and language and, as far as possible,
terminology should be consistent and familiar to the user (Bernsen et al. 1998). Failure to provide
adequate (or co-operative) output phrasing may generate many different kinds of
miscommunication some of which could lead to interaction failure. A tool based on Cooperativity
Theory, CODIAL, has been developed in DISC to support the design of co-operative system
dialogue (Dybkjær 1999, http://www.disc2.dk/tools). The purpose of CODIAL is to help prevent
system miscommunication during early dialogue design. The main ideas are explained in this and
the following sections. For more details the interested reader is referred to the DISC SLDSs Best
Practice website. In addition to co-operativity, this section discusses input control which was
briefly mentioned in Section 2.4.

Contents
It is crucial that the user can trust what the system says. Users have good reason for dissatisfaction
if the system provides false information on, e.g., departure times, prices or meeting venues. Still,
this may happen, for instance if the database is not being properly updated.
Lack of relevance of system output caused by, e.g., misrecognition, will typically lead to meta-
communication dialogue. The system’s utterance may be perfectly relevant given its interpretation
of what the user said but totally irrelevant given what the user actually said. If, for instance, a user
has asked for information on train connections between Ulm and Stuttgart and the system replies:
“When do you want to go from Ulm to Coburg?”, then obviously the user will initiate some kind of
repair, such as “No, no, not to Coburg, to Stuttgart.”, which many systems will have difficulty
coping with.
System output should be sufficiently informative. Otherwise, misunderstandings may occur which
are only detected much later during interaction, if at all, or which, at best, lead to immediate
requests for clarification by the user. A typical example of information insufficiency is a system
which, when asked for a discount ticket on a certain departure on which no discount is available,
merely replies that discount is not possible without offering the user a normal fare for the same
departure. Conversely, the system should not provide too much or overly verbose information. In
response, users may either become inattentive or try to take the dialogue initiative in ways which
the system cannot handle. And even attentive users are likely to forget lengthy messages. Also,
users may become confused about the discourse focus and what is the point of relevance, initiating
clarification meta-communication as a result.

 9

Form and language
System output must be clear and unambiguous. Unclarity naturally leads to uncertainty and need
for clarification. So does ambiguity if detected by the user. If undetected, as often happens, the
effects of ambiguity can be severe. If the user unknowingly selects a non-intended meaning of a
word or phrase uttered by the system, all sorts of things can go wrong. An example of multiple
ambiguity is a system which says that “Flight 658 will arrive at 9”. As long as the user does not
know if this is am or pm and does not know if this is arrival according to the regular flight plan or
expected actual arrival time, the user would be advised to ask a few question before acting on the
information provided. To help avoid ambiguity it is, moreover, advisable to use the same
expressions for the same purposes throughout the dialogue.
Users prefer the system to speak their native language in most applications. Just as importantly, the
system preferably should not use terms and expressions which are not familiar to most or all of its
users. If the system must do that, unfamiliar terminology should be explained either proactively
(before users ask) or through adequate measures for clarification meta-communication. For
instance, a car sales information system should be prepared to handle the clarification meta-
communication that will inevitably result (cf. 2.10).

Input control
It is important to realise that the system’s output language tends to have a massive priming effect
on the user’s language. Humans are extremely good at adapting (automatically, unconsciously)
their vocabulary, grammar and style to those of their dialogue partner, even if the partner happens
to be an SLDS (Amalberti, Carbonell and Falzon 1993, Gustafson, Larsson, Carlson and Hellman
1997, Zoltan-Ford 1991). It is, therefore, crucial that the words and grammar used in system output
can be recognised and understood by the system itself. Similarly, the system should have a
speaking style which induces users to provide input that is to the point and can be handled by the
system.
Closed system questions impose strong input language control. For instance, the system’s question
“Please state your city of departure” is likely to elicit a one-word answer such as “Copenhagen”.
“When do you want to leave” is a slightly more open question which will probably elicit longer
user input, such as an utterance containing a date, a date and a time, or a time. An entirely open
question, such as “How may I help you”, may invite any kind of user input much of which may be
difficult to handle for current SLDSs.
It may be desirable to use a fairly restrictive kind of output language in error handling situations
(cf. 2.10) and when interacting with novice users. For instance, relatively closed system questions
or listings of options may often serve to guide novice users through the dialogue in a natural way.
This is relatively easy to do for well-structured tasks where user and system share a model of the
sub-tasks to be addressed and possibly in which order the sub-tasks should be dealt with. Ill-
structured tasks pose more challenges but may, e.g., be handled via menu-like structures (cf. 2.8).
To cater also for expert users who know exactly which input the system needs, the system may
accept not only an answer to the specific question it asks but other pieces of information as well.
For instance, when interacting with a train information system which asks “Where do you want to
travel from”, it should be possible not only to answer this question but also to provide more
complete information, such as “I want to go from Copenhagen to Odense tomorrow morning
around eight o’clock”. This will speed up the interaction for experienced users while still providing
guidance to novice users.
Depending on the task and the system’s output language, natural user input language may include
complex phenomena, such as cross-sentence co-reference, ellipsis, discontinuous user input
involving large gaps in the sequence of dialogue acts expected by the system, and indirect dialogue
acts. Any such phenomenon, when constituting a natural and frequently occurring part of the input,
has to be either handled by the system in a satisfactory way or eliminated through redesign of the
system’s output.
Exactly how terse or how polite the system’s output style should be depends on several factors.
Terse system output will encourage users to use a terse style which is easier for the system to
handle than a style which is lengthy and conversational. Furthermore, terseness speeds up task
performance and often appears to promote user satisfaction, in particular in case of repeated use of
the system. Politeness phrases may in such contexts be perceived as superfluous and contributing to
making the dialogue long-winded, see e.g. (Williams and Cheepen 1998). However, depending on,
i.a., the users (first-time users or expert users), their culture, and the organisation which owns the

 10

system (and which may want a friendly and polite system), some amount of politeness may be
desirable.
Lack of co-operativity in the system’s output may be diagnosed from the occurrence of
communication problems in simulated or real user-system interaction. Data capture and analysis is
costly, however, especially because large amounts of data may be needed for triggering most of the
communication problems which the system is likely to cause. To reduce cost, and to help identify
those kinds of lack of cooperativity which are less likely to cause communication problems,
CODIAL may be used both for walk-throughs through the interaction design prior to data capture
and for the actual data analysis. Interaction data analysis is needed to assess the efficiency of the
input control strategies adopted. User contacts through interviews and questionnaires are good
means for obtaining early input on how users experience the system’s output.

2.7 Adequate feedback

Adequate feedback is essential for users to feel in control during interaction. The user must feel
confident that the system has understood the information input in the way it was intended, and the
user must be told which actions the system has taken and what the system is currently doing. Only
by being told can the user take corrective action when needed. Moreover, telling the user is not
always good enough – the user must be told in such a way that the user notices what the system
says. It follows that it may be a good thing for SLDSs to provide several different kinds of
feedback to their users. It also follows that the task of ensuring adequate feedback can be a difficult
one. We distinguish between process feedback and information feedback.

Process feedback
When the system processes information received from the user and hence may not be speaking for
a while, process feedback keeps the user informed on what is going on. Many SLDSs may benefit
from offering this kind of feedback. A user who is uncertain about what the system is doing, if
anything, is liable to produce unwanted input or to believe that the system has crashed and decide
to hang up. Moreover, the uncertainty itself is likely to affect negatively the user’s satisfaction with
the system. Process feedback can be provided in many different ways. Right now, the field is in a
state of experimentation in which different kinds of process feedback are being tested. The best
process feedback needs not be spoken words or phrases describing what the system is doing but
could consist in grunts or ehm’s, tones, melodies, or appropriate earcons.

Information feedback
Feedback on the system’s understanding of what the user just said helps ensure that, throughout the
dialogue, the user is left in no doubt as to what the system has understood. The same effect of
building the user’s trust in the system is produced by feedback on the actions taken by the system,
particularly if those actions cannot be perceived by the user, such as when a money transfer has
been made from one account to another. All SLDSs therefore need to provide information
feedback. A user who is uncertain as to what the system has understood, or done, is liable to
produce unwanted input and to react negatively to the way the system works.
Information feedback can be provided in different ways. In many cases, the system may simply
carry out the action requested by the user in a way which the user can perceive, such as reading
aloud a requested voice mail, thus demonstrating that it has understood the user’s input. This way
of providing feedback is not always possible. Some actions cannot be perceived by users during
interaction with the system, as in the money transfer example above. Also, several pieces of
information may be required from the user (e.g. when booking a flight ticket). As long as the
system does not have all the information it needs, it must ask for the missing parts before taking
further action. Moreover, even when the system does have the information it needs for taking a
certain action, such as providing information about a train departure, it may not be clear to the user
that the system actually is talking about the train the user wants unless adequate feedback is
provided. In such cases the system should make the user aware of what it has understood. The
difficulty lies in finding the best way to do this. Consider the dialogue snippets in Figure 2. The
system misrecognises ‘Hamburg’ as ‘Hanover’. However, the user has no chance of spotting the
error from the answer shown in S2a. A better solution is the answer shown in S2b in which the
system explicitly mentions the city names and the date it has understood. This offers the carefully
listening user the possibility of detecting the error and initiating meta-communication in order to
correct the mistake (U2b). However, such implicit information feedback does not always work
because users may not listen carefully enough. If the intended users turn out to be prone to ignore
the implicit feedback, the more burdensome explicit feedback strategy shown in S2c might be

 11

considered. Experience has shown that the strategy illustrated in S2c is more robust than the
strategy illustrated in S2b (Sturm, den Os and Boves 1999). Explicit feedback does not come for
free, however. The price to pay for using explicit feedback is that user and system have to spend
more dialogue turns to solve the task.

U1: When is the first morning train from Frankfurt to Hamburg tomorrow morning?

S2a: 5.35 AM.
S2b: The first train from Frankfurt to Hanover on 3rd May 1999 leaves at 5.35 AM.
S2c: You want to go from Frankfurt to Hanover tomorrow morning?

U2a: Many thanks. Goodbye.
U2b+c: [Initiates correction.]
...

Figure 2. Different ways of providing information feedback. U is user and S is system.

The amount and nature of the information feedback the system should provide also depends on
factors such as the cost and risk involved in the user-system transaction. Obviously, feedback on
bank transfers or travel bookings are more critical than feedback on which email the system should
be reading to the user next. Even travel information, if the user gets it wrong, can have serious
consequences for that user. Current opinion on information feedback during transactions of medium
to high significance probably is that the system developer should prefer the safer among the two
most relevant feedback options. Building the user’s trust and confidence in the system is more
important to user satisfaction than reducing the average number of turns needed to complete the
transaction.
For important transactions, an additional safeguard is to give the user a summary of the agreed
transaction at the end of the dialogue, preceded by a request that the user listens to it carefully. If
the request is not there, the user who has already ignored crucial feedback once, may do so again.

2.8 Adequate system interaction

An SLDS may handle one or several tasks, and tasks may be well-structured or ill-structured. In
general, the system should make the user understand clearly which task(s) the system can carry out
and how they are structured, accessed and addressed. To support natural interaction, an SLDS
needs a reasonable choice of dialogue initiative, an appropriate dialogue structure, sufficient task
and domain coverage, and sufficient reasoning capabilities.

Dialogue initiative and structure
Spoken human-human dialogue is prototypically mixed-initiative, the partners in dialogue
negotiating and exchanging dialogue initiative as they go along. In fact, however, many task-
oriented dialogues tend to be directed primarily by one of the interlocutors. This fact can be
exploited when designing human-system interaction. Users may even feel satisfied with less
initiative when interacting with an SLDS than when talking to a person as long as the dialogue
initiative distribution fits the task(s) the system and the user must solve together, and provided that
the rest of the best practice issues proposed in this paper are properly attended to. Thus, system
directed dialogue can work well for tasks in which the system simply requires a series of specific
pieces of information from the user, in particular if the user is new to the system. The robust way to
do this is for the system to ask for one piece of information at a time until the task has been
completed. The price to pay is that more experienced users are likely to miss the opportunity for
providing all the necessary pieces of information in a single utterance. To satisfy experienced users,
the system may have to be able to cope with the larger packages of input information which are
natural to these users. In a similar way, the rigid system directed menu-based approach, which is
often used when several unrelated tasks are available, may be softened by, e.g., the introduction of
pseudo sub-menus. Pseudo sub-menus enable the experienced user to access all functions directly
by speaking the right command without having to be guided through the series of sub-menus which
are available to the inexperienced user.
In principle, a (mainly) user directed dialogue is as much of an aberration from mixed initiative
dialogue as is the (mainly) system directed dialogue. Currently, user directed dialogue would seem

 12

to be appropriate primarily for applications designed for experienced users who know how to make
themselves understood by the system. Unless supported by screen graphics or other additional
modalities, inexperienced users are likely to address the system in ways it cannot cope with.
Mixed initiative dialogue, i.e. a mixture of system and user initiative, is often both desirable and
technically feasible. At some points in the dialogue it may be appropriate that the system takes the
initiative to guide the user, obtain missing information, or handle an error. At other points, such as
when the user needs information from the system, is already familiar with the system or wants to
correct an error, it is appropriate for the user to take the initiative.
As long as we cannot build fully conversational systems, dialogue designers may have to impose
some kind of structure onto the dialogue, determining which topics (or sub-tasks) could be
addressed when. It is important that the structure imposed on the dialogue is natural to the user,
reflecting the user’s intuitive expectations, especially in system directed dialogue in which the user
is not supposed to interfere with the dialogue structure. Unnatural dialogue structure will often
cause users to try to take the initiative in ways which the system cannot cope with.

Task and domain coverage
Sufficient task and domain coverage is also crucial to natural interaction. Even if unfamiliar with
SLDSs, users normally have rather detailed expectations to the information or service which they
should be able to obtain from the system. It is important that the system meet these expectations. If,
for some reason, the system is not able to perform a certain sub-task which users would expect the
system to handle, this has to be stated clearly. Even then, user satisfaction is likely to suffer. For
instance, if two people want to travel together on a roundtrip, it is standard for human travel agents
to book for both of them in parallel, making sure that they get adjacent seats on all legs of the
itinerary. Users are therefore likely to expect the system to be able to do just that. If the system has
been designed to book for one person at a time, users must be told explicitly that this is the way the
system works. And they may not like the considerable amount of extra dialogue turns they have to
go through in order to book what to them is a simple twosome journey.

Reasoning
Contextually adequate reasoning is a classical problem in the design of natural interaction. Even
when users have been appropriately primed to expect a rather primitive interlocutor, they tend to
assume that the system is able to perform the bits and pieces of reasoning which humans are able to
do without thinking and which are inseparable parts of natural dialogue about the task. Typically,
therefore, SLDSs must incorporate both facts and inferences about the task as well as general world
knowledge in order to act as adequate interlocutors. If, for instance, the task has a temporal
dimension, the system must be able to infer which date the user is talking about when saying
“tomorrow” or “on Friday”. Defining which kinds of reasoning the system must be capable of is
part and parcel of defining the system’s task and domain coverage and subject to similarly difficult
decisions on task delimitation (cf. the preceding paragraph). For instance, whereas it may be
obvious that the system should be able to define an absolute date based on the user’s “tomorrow”, it
may be less obvious that the system should be able to do the same for “Christmas Day”,
“Pentecost” or even “The opening day of Wimbledon”.
It is possible to get rough ideas on initiative distribution, users’ models of the task, and how to
delimit the domain from studying recorded human-human dialogues on tasks similar to those which
the system is intended to cover. However, the recordings should only be considered possible
starting points. In particular, as task complexity grows, developers are likely to find themselves
forced to adopt more restrictive task delimitations and impose a more rigid dialogue structure than
those which they found in the human-human dialogues. Having done that, the resulting interaction
model needs early testing and evaluation. In particular, if the developer is into relatively high task
complexity compared to the state of the art, early testing is strongly recommended (see 2.11).

2.9 Sufficient interaction guidance

Sufficient interaction guidance is essential for users to feel in control during interaction. Interaction
guidance can be particularly hard to get right in speech-only, walk-up-and-use SLDSs. Speech is
inappropriate for providing lengthy and complex “user manual” instructions up front for first-time
users (cf. 2.6 on over-informativeness and verbosity). Moreover, at any given time some users will
already be familiar with the system whereas others will be novices. Issues to consider include cues
for turn-taking vs. barge-in; the background and experience of the target users; help facilities; and
highlighting of non-obvious system behaviour, such as that the system does not listen when it

 13

speaks, needs particularly reduced forms of user input, or handles the task in some non-standard
manner.

Cues for turn-taking and barge-in
Barge-in or talk-over means that users can interrupt the system whenever they wish and still expect
to be recognised and understood, even when the system is speaking or is processing recent input.
Barge-in allows the user to speed up the interaction, for instance by interrupting already familiar
instruction prompts in order to get on with the task. It is known, however, that many users do not
interrupt the system even when they know they can do so. On the other hand, people are used to
taking an unfilled pause as a cue to start speaking. Thus, if the system does not allow barge-in, it
must provide clear cues for turn-taking, making it completely clear to the user when to speak and
when to refrain from speaking because the system does not listen. Cues can be explicit, such as the
up-front instruction “Please speak after the tone” followed by a tone each time it is the user’s turn
to speak, or implicit, such as when the system stops talking.
A major problem is the silence which may occur when the system starts processing the user’s input
(cf. 2.7 on process feedback). This silence could be taken to indicate that, e.g., the system did not
get what was said or that the system needs additional information, and that the user should start
speaking again. If the system is still listening whilst processing the previous user input, the user’s
new input may cause problems for the dialogue manager which has to generate an appropriate
response to disjoint pieces of user input. And if the system is not listening any more, important
input could be lost in cases when users do not merely repeat themselves.

User background and experience
It is useful to distinguish between four types of user: system expert/domain expert, system
expert/domain novice, system novice/domain expert and system novice/domain novice. An SLDS
needs not support all four groups, of course. If the target user group is domain and system experts
only, then, obviously, the system is not a walk-up-and-use system. In that case, the developer may
be able to impose strict task performance order, a relatively large number of mandatory command
keywords, and ample use of written user instructions. If the primary target group is system novice
users, on-line instructions and other help information is likely to be needed. This need tends to
increase even further when the system novices are also domain novices who need explanation of
domain technicalities, such as what is a “green departure”.
Given the relative simplicity of current SLDSs, walk-up-and-use users may quickly become
(system) experts. This means that interaction should be supported and facilitated for both system
novices and system experts. Special shortcuts for expert interaction can be a good solution. Such
shortcuts include introductions which can be skipped easily through barge-in or explicit de-
selection, pseudo sub-menus (cf. 2.8), and progressive help mechanisms which are only being
provided when needed. An example of progressive help is that a prompt for experts is followed by
progressive help for the inexperienced user. The system may say, e.g., “Which service?” followed
by “The services available are …” in case the user does not start speaking right after the first
prompt.

Help and other kinds of guidance
General and explicit instructions on what the system can and cannot do and how to interact with it
may be provided in a spoken introduction which can be repeated on request or be skipped by
experienced users. In fact, most speech-only SLDSs strictly need some up-front introduction to
guide interaction. We already mentioned the when-(not)-to-speak issue above. Just as importantly,
the system should be perfectly clear about the task(s) which the user can accomplish through
interaction. For instance, users build very different expectations from being told (a) “Flight
information, how may I help you?” and (b) “This service provides information on British Airways
domestic flight departures and arrivals. How may I help you?”
The first few words uttered by the system should not express instructions. Rather, the system might
say, e.g., “Hello, you are connected to a spoken dialogue system …” in order to leave users just
enough time to realise that they are connected to the right service and are speaking to a system. The
longer the spoken introduction itself, the less likely it is that the user will remember and be able to
follow the instructions provided. Moreover, some instructions may not be feasible for users at all,
such as to remember to use a series of particular command keywords in order to navigate the
system. If the instructions needed by the walk-up-and-use user are too many to be presented in the
system’s introduction, some of them may be relocated for presentation at particular points during
interaction and only when needed. This eliminates the burden of having to memorise instructions

 14

which are provided long before they are needed, if they are needed at all for some variety of the
task.
Providing useful help mechanisms is a difficult interaction design task. Help may be an implicit
part of the dialogue, such as the progressive help mentioned above; be available on request by
saying “help”; or be automatically enabled if the user is having problems repeatedly, for instance in
being recognised. In this case the system may, e.g., propose how to express input or inform the user
on what can be said.
Hardcopy instruction, such as quick reference cards, may be used to inform users on what the
system can and cannot do, what its dialogue structure is, and to instruct them on how to interact
with it, for instance through sample dialogues and a list of available commands. In general, this
strategy for interaction guidance primarily makes sense if most users are known in advance and will
be using the system repeatedly. Hardcopy instruction should never be the prime source of
information because it tends to get lost, not to be at hand when needed, or be obsolete. Walk-up-
and-use users often present the additional difficulty that it is impossible to know who they are and
hence impossible to provide them with written hardcopy instructions in the first place.
This section has argued that barge-in is usually an advantage for the user. However, more research
is needed on the potential problems caused by barge-in. SLDSs have great potential for facilitating
interaction for experienced users whilst keeping the novices supported as well. A clear system
introduction is normally essential to adequate novice support. It is when this introduction is
insufficient that the really intricate problems of providing dynamic help begin, in particular in
speech-only SLDSs. For the time being, solutions to those problems should be carefully evaluated
by exposing them to interaction with representative users.

2.10 Adequate error handling

Even if the best practice issues 2.1 through 2.9 above have been taken into account carefully during
specification, design and implementation, the SLDS and its users will still make errors during
dialogue. In human-system interaction, error prevention is far preferable to error correction, and
what those best practice issues do is to help prevent errors from occurring during interaction.
Humans are good at error correction during spoken dialogue, which is why most errors are handled
seamlessly in shared-goal human-human communication. Also in this respect, however, current
SLDSs are far inferior to their human interlocutors. This is why adequate error handling remains a
difficult issue in SLDS development. Intuitively, this issue can be decomposed along two
dimensions: (a) either the system initiates error-handling meta-communication or the user initiates
error-handling meta-communication. And (b) when error-handling meta-communication is
initiated, it is either because one party has failed to hear or understand the other or because what
was heard or understood is false, or it is because what was heard or understood is somehow in need
of clarification. We distinguish, therefore, between system or user initiated repair meta-
communication and system or user initiated clarification meta-communication.

Repair meta-communication
System-initiated repair meta-communication is needed whenever the system either did not
understand or was uncertain that it understood correctly what was said, for instance due to low
recognition confidence. In such cases, the system must ask for repetition, ask the user to speak
louder or modify the way the input is being expressed in other specified ways, or tell the user what
it did understand and ask for confirmation or correction. The more precisely this can be done, the
better. For instance, if the system believes that the user said either “Hamburg” or “Hanover”, it
should tell the user just that instead of broadly asking the user to repeat.
A common occurrence when the system has made clear that it did not (fully) understand what was
said, is that the user simply repeats the utterance which caused the problem, leaving the system in
exactly the same uncomprehending situation as before. In such cases, the system may either try
again, choose to fall back on a human operator, close the dialogue, or, better, start graceful
degradation, i.e. carry on by changing the level of interaction into a simpler one. Depending on the
problem at hand and the sophistication of the system, this can be done in different ways, such as by
asking focused questions, asking for re-phrasing, asking a simple yes/no question, or asking the
user to spell a crucial word.
Users may simply fail to respond. Then the system should make the user aware that it is expecting
their input, for instance by repeating its latest utterance.
Users may also be understood by the system to have said something which is false and hence needs
to be corrected. This is often simple to do, as when the system replies “You have deleted the emails

 15

from yesterday” to the user’s “Read the emails from yesterday”. Sometimes the system has reason
to believe that the user has misunderstood what the system said. A symptom of misunderstanding is
that the user’s input is meaningless in the task context. For instance, the user may be heard as
responding “London” to a question about return date. A simple strategy in such cases is for the
system to repeat the question. In the – rather blatant - example just given, most users can be
expected to correct themselves on being asked the same question again. This strategy will not
always work, however. For instance, if the system only discovers a user’s misunderstanding later in
the dialogue, more elaborate recovery strategies are likely to be needed, such as back-tracking to
the point where the misunderstanding occurred. Also, some systems would not consider the user’s
“London” as a misunderstanding but rather as a topic shift. On that assumption and depending on
the task history, the system might respond, e.g. “You want to travel from London?”.
Just as all SLDSs need a strategy for recovering from falsehood and from failure to hear or
understand what the user just said, all SLDSs need a strategy for helping the user recover from
falsehood and from failure to hear or understand what the system just said. User-initiated repair
meta-communication can be designed in several different ways. Ideally, users should just initiate
repair the same way they would have done in dialogue with a human. Some systems have been
designed to allow that, but with varying success, the problem being that users may express their
corrections in many different ways (Carlson 1996). Other systems require the user to use
specifically designed keywords for this purpose, such as “Repeat” and “Correct” (Bernsen et al.
1998). Keywords are simpler for the system to handle than unrestricted user speech. The problem is
that using keywords for correction is unnatural and hence difficult for the user to remember. A third
approach is the “eraser” principle. For instance, if the system through misrecognition gets
“Frankfurt to Hanover” instead of, as the user said, “Frankfurt to Hamburg”, the user simply has to
repeat “Frankfurt to Hamburg” until the system has received the message (Aust et al. 1995). Whilst
this solution may work well for low-complexity tasks, it may be difficult to keep track of in high-
complexity tasks. And it will not work if the system cannot recognise input on any sub-task all the
time but only on a selected subset.
A simple case is when the user detects that the system did not hear anything. It is often sufficient
for the user to repeat the input, possibly a bit louder, because if the system does not hear anything
this will typically be because the user spoke while the system did not listen or because the user did
not speak loudly enough relative to the microphone.
It sometimes happens that users change their minds during the dialogue with the system. In
practice, these cases are similar to cases in which the system has misunderstood the user.

Clarification meta-communication
Very roughly speaking, clarification meta-communication is more difficult to design for than repair
meta-communication, and user-initiated clarification meta-communication is more difficult to
design for than system-initiated clarification meta-communication. Some exceptions to these rules
are that it can be hard to design for user misunderstandings (see above) and that it can sometimes
be relatively straightforward to anticipate and design for user clarification needs (see below).
Clarification is typically of the form “I hear what you say, but what, exactly, do you mean?”
System-initiated clarification meta-communication is needed when the user’s input is inconsistent,
ambiguous or underspecified. In such cases, the system must ask for clarification, for instance by
pointing out that the inconsistent expression “Thursday 9th" may be either “Thursday 8th" or
“Friday 9th", asking whether the ambiguous “9 o’clock” is am or pm, or asking at which time of
day the user wants to leave to the underspecified “I want to depart on Tuesday.”.
User-initiated clarification meta-communication is needed whenever the system produces
inconsistent or ambiguous utterances, or uses terms with which the user is not familiar. In human-
human conversation, these problems are easily addressed by asking questions such as: “What do
you mean by green departure?” or “Do you mean scheduled arrival time or expected arrival time?”.
Unfortunately, handling such questions is difficult for SLDSs and the system developers might not
have discovered all the potential problems in the first place. If they had, they could have tried to
prevent all or most of the problems from occurring through adequate output phrasing or other
means. As argued in 2.6 above, smooth dialogue requires that all ambiguities, inconsistencies and,
in most SLDSs, terms unknown to users are avoided rather than having to be clarified on the user’s
initiative. There are exceptions, however. Due to the nature of their domain, some tasks inherently
require facilities for clarifying the terminology used. For instance, when interacting with a used
cars information system, some users will necessarily be wondering what the system is talking about
as soon as it mentions ABS brakes or on-board GPS systems. It is not a practical option for the

 16

system to explain all of those domain terms as it goes along. This would be intolerable for the users
who are familiar with the domain.
Most SLDSs need abilities for handling system- and user-initiated repair, and many SLDSs need
system-initiated clarification abilities. We have described a series of repair and clarification
mechanisms above. Even if these mechanisms are in some sense general, i.e. independent of
particular domains, tasks and users, there is no simple decision procedure for deciding which of
them to include in a particular SLDS. Their generality notwithstanding, sensible decisions very
much depend on factors such as domain, task complexity, user population and peculiarities of user
behaviour which can only be discovered through interaction data analysis.

2.11 Sufficient and timely evaluation of human factors

Human factors evaluation is necessary for measuring progress towards the human factors goals
which the system has to meet. Central issues in human factors evaluation include: when to evaluate,
the type of evaluation to use, the purpose of evaluation, the nature of the system version undergoing
evaluation (e.g. mock-up, simulation, implemented system), what to evaluate, which and how many
users to involve, and how to do the evaluation.

Types and purpose of evaluation
Evaluation can be quantitative or qualitative, subjective or objective. Quantitative evaluation
consists in quantifying some parameter through an independently meaningful number, percentage
etc. which in principle allows comparison across systems. Qualitative evaluation consists in
estimating or judging some parameter by reference to expert standards and rules. Subjective
evaluation consists in judging some parameter by reference to users’ opinions. Objective evaluation
produces subject-independent parameter assessment. Ideally, we would like to obtain quantitative
and objective progress evaluation scores for usability which can be objectively compared to scores
obtained from evaluation of other SLDSs. This is what has been attempted in the PARADISE
framework based on the claim that task success and dialogue cost are potentially relevant
contributors to user satisfaction (Walker, Litman, Kamm and Abella 1997). However, many
important human factors issues cannot be subjected to quantification and objective expert
evaluation is sometimes highly uncertain or non-existent.
The purpose of evaluation may be to detect and analyse design and implementation errors
(diagnostic evaluation), measure SLDS performance in terms of a set of quantitative and/or
qualitative parameters (performance evaluation), or evaluate how well the system fits its purpose
and meets actual user needs and expectations (adequacy evaluation), cf. (Hirschmann and
Thompson 1996, Gibbon, Moore. and Winski 1997, Bernsen et al. 1998). The latter purpose is the
more important one from a human factors point of view although the others are relevant as well.
Which type of evaluation to use and for which purpose, depends on the evaluation criterion which
is being applied (see below). Other general references to natural language systems evaluation are
(EAGLES 1996, Gaizauskas 1997, Sparck Jones and Galliers 1996).

When to evaluate and methods to use
Usability evaluation should start as early as possible and continue throughout development. In
general, the earlier design errors are being identified, the easier and cheaper it is to correct them.
Different methods of evaluation may have to be applied for evaluating a particular parameter
depending on the phase in the lifecycle in which evaluation takes place. Early design evaluation can
be based on mock-up experiments with users and on design walk-throughs. Wizard of Oz
simulations with representative task scenarios can provide valuable evaluation data. When the
system has been implemented, controlled scenario-based tests with representative users and field
tests can be used. Recorded dialogues with the (simulated) system should be carefully analysed for
indications that the users have problems or expectations which exceed the capabilities of the
system. Human-system interaction data should be complemented by interviews and questionnaires
to enable assessment of user satisfaction. If users are interacting with the prototype on the basis of
scenarios, there are at least two issues to be aware of. Firstly, scenarios should be designed to avoid
priming the users on how to interact with the system. Secondly, sub-tasks covered by the scenarios
will not necessarily be representative of the sub-tasks which real users (not using scenarios) would
expect the system to cover.
The final test of the system is often called the acceptance test. It involves real users and must satisfy
the evaluation criteria defined as part of the requirements specification (cf. 2.1).

 17

User involvement
In general, representative users from the target user group(s) should be involved in evaluation from
early on. The developers themselves can certainly discover many of the usability problems with the
early design and implementation, especially when supported by state-of-the-art usability standards,
evaluation criteria and design support tools. The problem is that they know too well how to interact
with the system in order to avoid creating interaction problems which the system cannot handle.
For the time being, there is no alternative to involving the target users in all or most system
evaluation phases and for most usability evaluation purposes. This is costly and complex to do.
However, the data analysis which is crucial to benefiting from trials with the system, is as
necessary after trials with developers as it is after trials with representative users. Even the early
involvement of representative users is no guarantee that the system will ultimately produce
sufficient user satisfaction. For one thing, the data distribution they generate may not match the
behaviour of the users of the system, once installed. For another, experimental user trials are
different from real situations of use in which time, money and trust are really at stake. For these
reasons, and particularly when introducing SLDSs which are innovative in some respect, it is
necessary to prepare and budget for field trials with the implemented system as well as for the
subsequent data analysis and fine-tuning of the system. Users who are “only” involved in a test can
be much more indifferent to, or more positive towards, a system with poor usability characteristics
than real users who have something to loose if the system lets them down (Bernsen et al. 1998).

What to evaluate
As remarked earlier, there is at present no consensus as to which human factors evaluation criteria
to use. However, the best practice issues discussed in the present paper may serve to generate a
comprehensive list of usability evaluation criteria which would appear mandatory for evaluating the
usability of all or most SLDSs. Even if not all of the criteria below are included in the requirements
specification, they are still useful for evaluating how usable the system is and what progress is
being made during its development. The evaluation criteria we propose are:

1. Modality appropriateness
2. Input recognition adequacy
3. Naturalness of user speech relative to the task(s) including coverage of user vocabulary and

grammar
4. Output voice quality
5. Output phrasing adequacy
6. Feedback adequacy
7. Adequacy of dialogue initiative relative to the task(s)
8. Naturalness of the dialogue structure relative to the task(s)
9. Sufficiency of task and domain coverage
10. Sufficiency of the system’s reasoning capabilities
11. Sufficiency of interaction guidance (information about system capabilities, limitations and

operations)
12. Error handling adequacy
13. Sufficiency of adaptation to user differences
14. Number of interaction problems (Bernsen et al. 1998)
15. User satisfaction
The developers’ options wrt. all criteria except 14 were discussed under the best practice issues
above. Criterion 14 refers to the cooperativity guidelines which form the basis of CODIAL
introduced in Section 2.6. Most criteria are qualitative. Several are subjective or include subjective
judgement when no expert consensus can be found in the state-of-the-art. In particular, user
satisfaction is subjective throughout. Nevertheless, in view of how much remains to be discovered
about how the behaviour of SLDSs affect the satisfaction of their users, subjective evaluation
remains a cornerstone in SLDS evaluation. Space does not permit discussion of user questionnaires
and interviews. General references are (Anastasi 1988, Miller 1984, Ericsson and Simon 1985).

 18

How to evaluate
Evaluation, including usability evaluation, is non-trivial and cannot be explained simply by stating
what to evaluate (cf. the list of evaluation criteria above) and what the developers’ options are (the
bulk of this paper). One of the most difficult questions in evaluation probably is how to do it
properly. In DISC we have developed a template which supports consistent and detailed description
of each evaluation criterion. The template includes the following issues: what is being evaluated
(e.g. feedback adequacy), the system part evaluated (e.g. the dialogue manager), type of evaluation
(e.g. qualitative), method(s) of evaluation (e.g. controlled user experiments), symptoms to look for
(e.g. user clarification questions), life cycle phase(s) (e.g. simulation), importance of evaluation
(e.g. crucial), difficulty of evaluation (e.g. easy), cost of evaluation (e.g. expensive), and support
tools (e.g. SMALTO), see (http://www.disc2.dk/tools). The idea is that the combined set of (i)
design options for SLDS usability, (ii) human factors evaluation criteria, and (iii) template-based
characterisation of each criterion, will provide developers with sufficient information for proper
evaluation of their SLDSs.

3. Conclusion
In this paper, we have attempted to provide a brief best practice overview of what to consider when
specifying, designing, developing and evaluating usable spoken language dialogue systems. We
have argued that the DISC approach to best practice in the development and evaluation of SLDSs is
on the right track towards developing a comprehensive understanding of SLDS usability, i.e. to
start from a thorough description of the issues which are faced by today’s developers and the
solutions they might consider, followed by a listing of the evaluation criteria they should apply
together with a guide to practical evaluation. Within this framework, many issues remain
unresolved or even unaddressed. Deployment usability issues are still poorly understood as are the
usability issues arising from multimodal and natural interactive applications which integrate
speech-only SLDSs into larger systems. Usability questionnaire design remains poorly understood.
The same applies to cultural differences in the perception of SLDS usability. Finally, we are aware
that, even though issues to do with SLDS user adaptation have been discussed in Sections 2.6, 2.8
and 2.9 above, we have not addressed the issue of user profiles which is of particular importance to
non-walk-up-and-use systems.

References
Anastasi, A. 1988. Psychological testing. New York, Macmillan.

Amalberti, R., Carbonell, N. and Falzon, P. 1993. User representations of computer systems in
human-computer speech interaction. International Journal of Man-Machine Studies 38: 547-566.

Aust, H., Oerder, M., Seide, F. and Steinbiss, V. 1995. The Philips automatic train timetable
information system. Speech Communication 17: 249-262.

Baggia, P., Gerbino, E., Giachin, E. and Rullent, C. 1994. Spontaneous speech phenomena in
naive-user interactions. Proceedings of TWLT8, 8th Twente Workshop on Speech and Language
Engineering, Enschede, The Netherlands, 37-45.

Benoit, C., Martin, J. C, Pelachaud, C., Schomaker, L. and Suhm, B.: Audio-Visual and
Multimodal Speech Systems. Article to appear in Gibbon, D., Moore, R. and Winski, R. (Ed.).
2000. Handbook of Standards and Resources for Spoken Language Systems, 2nd Edition. Mouton
de Gruyter, Berlin, New York.

Bernsen, N. O. 1997. Towards a tool for predicting speech functionality. Speech Communication
23: 181-210.

Bernsen, N. O., Dybkjær, H. and Dybkjær, L. 1998. Designing Interactive Speech Systems. From
First Ideas to User Testing. Berlin, Springer.

 19

Bernsen, N. O. and Luz, S. 1999. SMALTO: Speech functionality advisory tool. DISC Deliverable
D2.9. http://www.disc2.dk/tools.

Bossemeyer, R. W. and Schwab, E. C. 1991. Automated alternate billing services at Ameritech:
Speech recognition and the human interface. Speech Technology Magazine 5, 3, 24-30.

Carlson, R. 1996. The dialogue component in the Waxholm system. Proceedings of TWLT11, 11th
Twente Workshop on Dialogue Management in Natural Language Systems, Enschede, The
Netherlands, 209-218.

Cole, R. A., Mariani, J., Uszkoreit, H., Zaenen, A. and Zue, V. W. (Editorial Board), Varile, G. and
Zampolli, A. (Managing Editors). 1996. Survey of the State of the Art in Human Language
Technology. Sponsors: National Science Foundation, Directorate XIII-E of the Commission of the
European Communities, Center for Spoken Language Understanding, Oregon Graduate Institute.
URL: http://www.cse.ogi.edu/CSLU/HLTsurvey/.

Dybkjær, L. 1999. CODIAL, a tool in support of cooperative dialogue design. DISC Deliverable
D2.8. http://www.disc2.dk/tools.

EAGLES. 1996. Evaluation of Natural Language Processing Systems. Final Report, EAGLES
Document EAG-EWG-PR2. Copenhagen, Center for Sprogteknologi.

Ericsson, K. and Simon, H. 1985. Verbal reports as data. Psychological Review, 67, 215-251.

Failenschmid, K., Williams, D., Dybkjær, L. and Bernsen, N. O. 1999. Draft proposal on best
practice methods and procedures in human factors. DISC Deliverable D3.6. http://www.disc2.dk.

Franco, V. 1993. Automation of operator services at AT&T. Proceedings of Voice’93, San Diego.

Gaizauskas, R. (Ed.) 1997. Proceedings of the SALT Club Workshop on Evaluation in Speech and
Language Technology, Sheffield.

Gibbon, D., Moore, R. and Winski, R. (Eds.) 1997. Handbook of standards and resources for
spoken language systems. Mouton de Gruyter, Berlin, New York.

Gustafson, J., Larsson, A., Carlson, R. and Hellman, K. 1997. How do system questions influence
lexical choices in user answers. Proceedings of EuroSpeech’97, Rhodes, 2275-2278.

Heid, U., Bernsen, N. O., Dybkjær, L. and van Kuppevelt, J. 1998. Current practice in the
development and evaluation of spoken language dialogue systems. DISC Deliverable D1.8.
http://www.disc2.dk.

Hirschmann, L. and Thompson, H. S. 1996. Overview of evaluation in speech and natural language
processing. In Cole et al. 1996, Section 13.1.

Karlsson, I. 1999. Draft proposal on best practice methods and procedures in speech generation.
DISC Deliverable D3.3. http://www.disc2.dk

Miller, G. 1984. Experimental Design and Statistics. London, Methuen.

Nielsen, J. 1993. Usability engineering. New York, Academic Press.

Oviatt, S. 1997. Multimodal interactive maps: Designing for human performance. Human-
Computer Interaction, Vol.12, No. 1&2: 93-129.

 20

Peng, C. and Vital, F. 1996. Der sprechende Fahrplan. Output 10, 92-96.

Roth, S. F., Chuah, M. C., Kerpedjiev, S., Kolojejchick, J. and Lucas, P. 1997. Towards an
information visualization workspace: Combining multiple means of expression. Human-Computer
Interaction, Vol.12, No. 1&2: 131-185.

Sparck Jones, K. and Galliers, J. 1996. Evaluating natural language processing systems. Lecture
Notes in Artificial Intelligence 1083. Berlin, Springer.

Sturm, J., den Os, E. and Boves, L. 1999. Issues in spoken dialogue systems: Experiences with the
Dutch ARISE system. Proceedings of ESCA Workshop on Interactive Dialogue in Multi-Modal
Systems, Kloster Irsee, Germany, 1-4.

Waibel, A. 1996. Interactive translation of conversational speech. IEEE Computer, 41-48.

Walker, M. A., Litman, D. J., Kamm, C. A. and Abella, A. 1997. Evaluating interactive dialogue
systems: Extending component evaluation to integrated system evaluation. Proceedings of the
ACL/EACL Workshop on Spoken Dialog Systems, Madrid, 1-8.

Williams, D. M. L. and Cheepen, C. 1998. Just speak naturally: Design for naturalness in
automated spoken dialogues. Proceedings of CHI 98, ACM Press, 243-244.

Wyard, P., Appleby, S., Kaneen, E., Williams, S. and Preston, K. 1995. A combined speech and
visual interface to the BT business catalogue. Proceedings of the ESCA Workshop on Spoken
Dialogue Systems, Vigsø, Denmark, 165-168.

Zoltan-Ford, E. 1991. How to get people to say and type what computers can understand. Int.
Journal of Man-Machine Studies (34), Academic Press Ltd, 527-547.

