
User Errors in Spoken Human-Machine Dialogue

Niels Ole Bernsen, Laila Dybkjær and Hans Dybkjær
Centre for Cognitive Science, Roskilde University,

PO Box 260, 4000 Roskilde, Denmark
phone: +45 46 75 77 11 fax: +45 46 75 45 02

emails: nob@cog.ruc.dk, laila@cog.ruc.dk, dybkjaer@cog.ruc.dk

Abstract
Controlled user testing of the dialogue component of spoken language dialogue systems
(SLDSs) has a natural focus on the detection, analysis and repair of dialogue design problems.
Not only dialogue designers and their systems commit errors, however. Users do so as well.
Improvement of dialogue interaction is not only a matter of reducing the number and severity
of dialogue design problems but also of preventing the occurrence of avoidable user errors.
Based on a controlled user test of the dialogue component of an implemented SLDS, the paper
takes a systematic look at the dialogue errors made by users in the test corpus. A typology of
user errors in spoken human-machine dialogue is presented and discussed, and potentially im-
portant dialogue design advice derived from the fact that the notion of a ‘user error’ turns out to
be one that must be handled with care.

1 Introduction
This paper is based on a controlled user test of the dialogue component of the Danish
dialogue system which is an advanced spoken language dialogue system (SLDS).
When analysing the data from such tests, the natural focus is on dialogue design er-
rors. Such errors have to be identified and diagnosed, and ways of remedying them
must be found whenever possible. Dialogue design errors cause problems of user-
system interaction, make user task performance unnecessarily bumpy and generate
user dissatisfaction with SLDS technology. However, not everything that goes wrong
in the dialogue between user and system is due solely to errors made by the dialogue
designers. As an extreme viewpoint one could of course maintain that a system must
be able to deliver what the user wants no matter how the user behaves. However, we
suspect that not even a mind-reading system could do that. At the other extreme one
could claim that users just have to get used to the system no matter how silly the sys-
tem behaves. But nobody would claim that, we submit. In other words, a more bal-
anced viewpoint is required. Users also make errors during dialogue and some inter-
action problems are the compound effects of dialogue design errors and user errors.
This paper proposes to take a systematic look at the dialogue errors made solely by
users. As we shall see, it is not always straightforward to separate errors made solely
by users from compound errors and from pure errors of dialogue design, even if one
starts with what is apparently a reasonable definition of ‘user error’. In this paper we
want to present progress made with respect to the question of how to properly define
a user error and distinguish such errors from design errors and compound design and
user errors. Based on the user test material, we ask: of which types are the user errors

that were identified? What are their likely effects on the success of the dialogue?
What, if anything, can be done about them? And what is a ‘user error in human-
machine dialogue’ in the first place?

The Danish SLDS prototype is a ticket reservation system for Danish domestic
flights. The system runs on a PC with a DSP board and is accessed over the tele-
phone. It is a walk-up-and-use application which understands speaker-independent
continuous spoken Danish with a vocabulary of about 500 words. The prototype runs
in close-to-real-time and is representative of advanced current systems. Comparable
SLDSs are found in [1,3,7]. The system has five main modules. The speech recog-
niser produces a 1-best string of words. The parser makes a syntactic analysis of the
string and extracts the semantic contents which are represented in frame-like struc-
tures. The dialogue handling module interprets the contents of the semantic objects
and decides on the next system action which may be to send a query to the applica-
tion database, send output to the user, or wait for new input. In the latter case, predic-
tions on the next user input are sent to the recogniser and the parser. Output is pro-
duced by concatenating pre-recorded phrases under the control of the dialogue mod-
ule.

In what follows, Section 2 provides a description of the dialogue model for the Dan-
ish dialogue system and presents an example dialogue from the user test. The user test
is described in Section 3. Section 4 presents an analysis of the user errors that were
identified in the user test. Section 5 concludes the paper.

2 The Dialogue Model
The dialogue model for the Danish dialogue system was developed by the Wizard of
Oz (WOZ) experimental prototyping method in which a person simulates the system
to be designed in dialogue with users who are made to believe that they interact with
a real system [8]. The dialogue model had to satisfy the following technological con-
straints imposed by the speech recogniser: to ensure real-time performance, at most
100 words could be active in memory at a time; to ensure an acceptable recognition
rate, an average and a maximum user utterance length of 3-4 words and 10 words,
respectively, were imposed. Other design goals, such as linguistic naturalness, dia-
logue naturalness and dialogue flexibility had to be traded off against these con-
straints [4].

The WOZ dialogue model development was iterated until the model satisfied the de-
sign constraints. In each iteration, the dialogues were recorded, transcribed, analysed
and used as a basis for improvements on the dialogue model. We performed seven
WOZ iterations yielding a transcribed corpus of 125 task-oriented human-machine
dialogues corresponding to approximately seven hours of spoken dialogue. The 94
dialogues that were recorded during the last two iterations were performed by external
subjects whereas only system designers and colleagues had participated in the earlier
iterations. A total of 24 different subjects were involved in the seven iterations. Dia-
logues were based on written descriptions of reservation tasks (scenarios).

The dialogue model resulting from the WOZ iterations is mixed-initiative. Domain
communication is system-directed. Domain communication is communication within
or about the task domain. Because of the strong limitations on active vocabulary size
(see above), it was necessary during domain communication to leave the main initia-
tive with the system. The system maintains dialogue initiative by concluding all its
turns by a non-open question to the user, i.e. a question which asks for a well-defined
piece of information, such as a choice between binary options, a date or time, or a
destination. A field study was made of the most natural order in which to exchange
the needed information. The implemented task structure conforms to the most com-
mon structure found in human-human domestic airline ticket reservation dialogues
recorded in a travel agency. Whereas domain communication is system-directed, users
can take the initiative in meta-communication with the system. Meta-communication
is communication about the user-system communication itself and is usually being
undertaken for purposes of clarification or repair. Whenever needed, users may initi-
ate meta-communication to resolve misunderstanding or lack in understanding by
using one of the keywords ‘change’ and ‘repeat’. The system initiates meta-
communication by saying “Sorry, I did not understand” or by asking the user, after a
long pause, “Are you still there?”

In addition to contributions to meta-communication and to the achievement of par-
ticular reservation tasks, the system provides two pieces of general information: (i)
the system’s introduction provides information on what the system can and cannot do
and how to interact with it (Figure 1). (ii) An explanation is provided of the different
types of discount that are possible on return tickets. In order not to waste the time of
experienced users, the system provides this information only to novice users. Figure 3
shows a dialogue from the user test of the implemented system. The dialogue is based
on the scenario shown in Figure 2. The user has already made one reservation and
continues without making a new call, thereby avoiding the introductory phrases
shown in Figure 1. Dialogue and scenario examples have been translated from the
Danish.

S1: Hello, this is the DanLuft reservation service for domestic flights. Do you

know how to use this system?
U1: No.
S2a: The system can reserve tickets for Danish domestic flights. You use it by an-

swering the system’s questions. In addition you may use the two special com-
mands “repeat” and “change” to have the most recent information repeated or
changed. The system will only understand you when you answer its questions
briefly and one at a time.

S2b: Please state your customer number.

Fig. 1. The introduction (S2a) to the Danish dialogue system. S means system, U means user.

Anders Bækgaard (ID-number 6), Paul Dalsgaard (ID-number 3) and Børge Lindberg
(ID-number 4) work in a department in Aalborg that has customer number 3. They are
all going to Copenhagen on the first weekend in February. They want to depart by the
earliest flight on Saturday at 7:20 and return by the latest flight on Sunday at 22:40.

Fig. 2. The scenario T32.

3 The User Test
The user test was carried out with a simulated speech recogniser [2]. A wizard keyed
in the users’ answers into the simulated recogniser. The simulation ensured that typos
were automatically corrected and that input to the parser corresponded to an input
string which could have been recognised by our real speech recogniser. In this set-up,
the recognition accuracy would be 100% as long as users expressed themselves in
accordance with the vocabulary and grammars known to the system. Otherwise, the
simulated recogniser would turn the user input into a string which only contained
words and grammatical constructions from the recogniser’s vocabulary and rules of
grammar.

The test was based on 20 different scenarios which had been constructed to enable
exploration of all aspects of the task structure. As the flight ticket reservation task is a
well-structured task in which a prescribed amount of information must be exchanged
between user and system, it was possible to extract from the task structure a set of
sub-task components, such as number of travellers, age of traveller and discount ver-
sus normal fare, any combination of which should be handled by the system. The sce-
narios were generated from systematically combining these components.

Twelve novice subjects, mostly professional secretaries, participated in the user test.
The subjects conducted the scenario-based dialogues over the telephone in their nor-
mal work environments in order to make the task as realistic as possible. The subjects
were given a total of 50 tasks based on 48 scenarios. A task consists in ordering one
or more tickets for one route. The number of recorded dialogues was 57 because sub-
jects sometimes reiterated a failed dialogue and eventually succeeded in the task. A
dialogue is one path through the dialogue structure. Subjects failed on seven tasks.
The task transaction success rate thus was 43/50% = 86%.

Each dialogue was recorded and all transactions between the individual system mod-
ules were logged. The recorded dialogues were transcribed and analysed. The analysis
aimed at detecting dialogue interaction problems and was done as follows. Based on
the dialogue structure, a template was built which contained the system’s questions.
For each scenario, normative system questions and user answers were filled into the
template. The key contents of the actual dialogues were then plotted into the template.
Comparison between normative and actual system and user answers led to the identi-
fication of three major classes of interaction problems: (1) linguistic problems, (2)
problems of dialogue interaction, and (3) other problems, such as system breakdown.

(2) splits into (A) dialogue design problems and (B) user errors. The dialogue design
problems (A) identified in the user test are presented and discussed in [6]. The follow-
ing section focuses on describing and illustrating (B).

4 User Errors
The concept of a ‘user error’ is a complex one, as we shall see. For now, let us define
a user error as a case in which a user does not behave in accordance with the full nor-
mative model of the dialogue. In controlled user testing, the full normative model of
the dialogue is defined by (i) explicit designer instructions to users, i.e. the scenarios
that users have to carry out in dialogue with the system; (ii) explicit system instruc-
tions to users, such as the system’s introduction to itself (Figure 1); (iii) explicit sys-
tem utterances during dialogue; and (iv) implicit system ‘instructions’ to users. (i)
through (iv) will be illustrated and discussed below. (i) is absent in field testing of
systems and in practical system use. In such cases, the full normative dialogue model
reduces to (ii)-(iv). (ii) is very important to SLDS design and use because SLDSs are
vastly inferior dialogue partners when compared to humans. This means that humans
must be told how to interact with an SLDS lest they treat the system as a human dia-
logue partner. Users, of course, should react appropriately to the system’s utterances
during dialogue (iii), given their scenarios and the dialogue context. The need to in-
clude (iv) follows from the important fact that it is impractical to explicitly inform
users about all the types of behaviour they should avoid during dialogue with the sys-
tem. Rather, users should be made to grasp the general fact that the system is a se-
verely restricted dialogue partner which should be treated accordingly.

S1: Do you want anything else?
U1: Yes.
S2: Customer number 4. Is that correct?
U2: No, customer number 3.
S3: Customer number 10 does not exist. Please state your customer number.
U3: Customer number 3.
S4: Customer number 3.
U (overlapping speech): Yes.
S4 (continued): How many people will travel?
U4: Three people.
S5: Three people. Please state the id-number of the first person.
U5: Number 6.
S6: Please state the id-number of the second person.
U6: Number 3.
S7: Please state the id-number of the third person.
U7: Number 4.
S8: Id-numbers 6, 3 and 4, Anders Bækgaard, Paul Dalsgaard and Børge Lindberg.

Where does the journey start?
U8: The journey starts in Aalborg.
S9: From Aalborg. Where does the journey end?
[Continued on the next page.]

U9: In Copenhagen.
S10: In Copenhagen. Do you want a return ticket?
U10: Yes.
S11: Are you particularly interested in discount?
U11: Yes.
S12: On which date will the journey start?
U12: The first weekend in February.
S13: Friday February 10th. At which time?
U13: It must be on Saturday at 7:20. E2, E4, E6a
S14: There is no departure at 7:20. The closest other red departure is at 10:50. Do

you want this departure?
U14: No.
S15: At which time?
U15: Saturday at 7:20. E6a
S16: There is no departure at 7:20. The closest other red departure is at 10:50. Do

you
 want this departure?
U16: Yes.
S17: On which date will the return journey start?
U17: On Sunday February 5th.
S18: Sunday February 12th. At which time?
U18: 22:40. E2
S19: 22:40. You have now booked 3 tickets for Anders Bækgaard, Paul Dalsgaard

and Børge Lindberg from Aalborg to Copenhagen on Friday February 10th at
10:50 returning on Sunday February 12th at 22:40. The tickets are on green
conditions. Your reference number is 51. The total price is 2820 kroner. Are the
tickets to be mailed or will the travellers pick them up at the airport?

U19: They should be mailed. E2
S20: The tickets will be mailed about one week before the departure. Do you want

anything else?
U20: Yes.

Fig. 3. The dialogue T32a from the user test of the Danish dialogue system (translated from the
Danish) [5]. The dialogue is based on the scenario shown in Figure 2. S means system, U

means user. Utterances marked with an E and a number contain user errors and are discussed in
more detail in Section 4.

According to the above definition of ‘user error’, 102 individual user errors were
found in the user test corpus which contains a total of 998 user utterances. Note that a
single utterance may contain several errors (cf. Figures 4, 7 and 8). Each user error
was characterised with respect to its context, its nature was explained and, whenever
possible, a preventive measure was proposed.

The six user errors identified in the dialogue shown in Figure 3 are analysed in Fig-
ures 4 to 9. E(n) refers to the user error typology in Table 1. ER means error, EX
means explanation, PM means preventive measure. S means system, U means user.

The number following each S and U refers to the dialogue in Figure 3. The dialogue
was a transaction failure.

ER: S12: On which date will the journey start? U12: The first weekend of February.
S13: Friday February 10th. At which time? U13: It must be Saturday at 7:20.
EX: The user ignores the date fed back by the system and only tries to change Friday
into Saturday.
PM: People sometimes do not listen sufficiently carefully. They may also care less in
experimental settings than in real life.

Fig. 4. A user error identified in the dialogue shown in Figure 3. The error is of type E2: Ignor-
ing clear system feedback. This error was considered a direct cause of the transaction failure.

ER: S17: On which date will the return journey start? U17: On Sunday February 5th.
S18: Sunday February 12th. At which time? U18: 22:40.
EX: The user ignores the system feedback on date.
PM: People sometimes do not listen sufficiently carefully. They may also care less in
experimental settings than in real life.

Fig. 5. A user error identified in the dialogue shown in Figure 3. The error is of type E2: Ignor-
ing clear system feedback. This error was considered a direct cause of the transaction failure.

ER: S19: You have now booked ... on Friday February 10th at 10:50 returning on
Sunday February 12th at 22:40 ... at the airport? U19: They should be mailed.
EX: The user ignores the system feedback on date.
PM: People sometimes do not listen sufficiently carefully. They may also care less in
experimental settings than in real life.

Fig. 6. A user error identified in the dialogue shown in Figure 3. The error is of type E2: Ignor-
ing clear system feedback. This error was considered a direct cause of the transaction failure.

ER: S13: Friday February 10th. At which time? U13: It must be Saturday at 7:20.
EX: The user is too occupied with the present problem to remember to use ‘change’
when trying to change Friday into Saturday.
PM: ‘Change’ is not natural. Prefer more natural meta-communication.

Fig. 7. A user error identified in the dialogue shown in Figure 3. The error is of type E4:
Change through comments.

ER: S13: Friday February 10th. At which time? U13: It must be Saturday at 7:20.
EX: Natural user response package.
PM: Allow naturally related information, such as date and time, to be provided in the
same user answer.

Fig. 8. A user error identified in the dialogue shown in Figure 3. The error is of type E6: An-
swering several questions at a time.

ER: S15: At which time? U15: Saturday at 7:20.

EX: Natural user response package.
PM: Allow naturally related information, such as date and time, to be given in the
same user answer.

Fig. 9. A user error identified in the dialogue shown in Figure 3. The error is of type E6: An-
swering several questions at a time.

A more thorough analysis of the user errors identified according to the definition
above revealed, however, that a significant number were caused by problems in the
design of the system’s dialogue contributions. For instance, users responded differ-
ently from what they should have responded according to the scenario because of
missing system feedback or because a system question was too open and invited users
to respond in ways which we had not intended. We shall ignore such cases and focus
on the dialogue errors that were made solely by the users. This leaves 61 individual
user errors for discussion in what follows.

Error Types Error Sub-Types No. of
Cases

Preventive Measure

E1. Misunderstanding
of scenario

a. Careless reading or
processing

14 Use clear scenarios,
carefully studied, to
reduce errors.

E2. Ignoring clear sys-
tem feedback

a. Straight ignorance 7 Encourage user seri-
ousness to reduce er-
rors.

E3. Responding to a
question different from
the clear system ques-

a. Straight wrong re-
sponse

4 Encourage user seri-
ousness to reduce er-
rors.

tion b. Indirect response 3 Disguised dialogue
design problem.

E4. Change through
comments (including
‘false’ keywords)

a. Cognitive overload 17 Disguised dialogue
design problem.

E5. Asking questions a. Asking for decision-
relevant information

3 Disguised dialogue
design problem.

E6. Answering several
questions at a time

a. Natural response
‘package’

10 Disguised dialogue
design problem.

 b. Slip 1 None.
E7. Thinking aloud a. Natural thinking

aloud
1 None.

E8. Non-cooperativity a. Unnecessary com-
plexity

1 None.

Table 1. The initially identified user error types and sub-types.

The remaining 61 user errors are of eight different types as shown in Table 1. Two
error types (E3 and E6) were divided into sub-types. E1 includes the scenario viola-
tions, i.e. violations of explicit designer instructions. E2 and E3a include cases in
which users did not pay attention to explicit system utterances (feedback and ques-
tions). E3b is closely related to E5 (see below). E3b, E4, E5, E6 and E7 represent
violations of explicit system instructions provided in the system’s introduction (Figure
1). In E8 the user violates implicit system instructions. We will now discuss each er-
ror type in more detail.

E1. Misunderstanding the Scenario

As remarked earlier, scenario misunderstandings are artefacts of controlled user test-
ing. Nevertheless, controlled user testing is important in systems design and it may be
worth considering ways of preventing user errors in controlled test environments. It
should be noted that scenario misunderstandings cannot give rise to transaction fail-
ure. The system cannot be blamed for not knowing that the user was supposed to have
asked for something different from what s/he actually did ask for. Transaction failure
occurs only when users do not obtain the reservation they actually ask for. In fact,
scenario misunderstandings rarely lead to other forms of dialogue interaction prob-
lems. They may do so if the user mixes up several possible scenarios and thereby suc-
ceeds in providing inconsistent input. Normally, however, users just carry out a dif-
ferent scenario. On the other hand, this may affect system evaluation. A scenario
which is not carried out may result in that part of the dialogue model remains un-
tested.

Almost one fourth of the 61 user errors were due to users acting against the instruc-
tions in the scenarios. These errors were of three (task-dependent) kinds: (a) users
asked for one-way tickets instead of return tickets; (b) users were not interested in
discount although according to the scenario they should have been; and (c) users
tended to miscalculate the date of departure if only given indirectly in the scenario. It
seems likely that the main reason for the many scenario misunderstandings is the arti-
ficial experimental situation. People care less in an experiment than they do in real life
and therefore tend not to prepare themselves sufficiently for the dialogue with the
system. In addition, unclear scenarios cause errors. E1 thus raises two issues in the
preparation of controlled user testing: (i) to reduce the number of errors, scenarios
should be made as clear as possible. Nothing is gained by unclear or misleading sce-
narios. Clear scenarios should not be confused with simple scenarios. Scenarios
should reflect the types of information real users actually have when addressing the
system. This information may be complex and some scenarios should reflect that.
This means that users may have to perform some mental processing of the scenario
information in order to provide correct answers to the system’s questions. (ii) Users
should be encouraged to carefully prepare themselves on the scenarios they are to
complete in conversation with the system. This should mirror the interest real users
have in getting the system to deliver what they want. A practical solution is to prom-
ise an award to subjects who stick to their scenarios in conversation with the system.

Awards depend on culture so we will not suggest a good bottle of wine as the sole
solution.

Whatever preventive measures are taken, however, scenario misunderstandings are
not likely to be totally absent from controlled user tests but reducing their number is
an important goal.

E2. Ignoring Clear System Feedback

The speech recognition capabilities of most telephone-based systems are still fragile.
It is therefore important that users listen carefully to the system’s feedback to verify
that they have been correctly understood. Of the seven transaction failures in the user
test, one was caused by a combination of a dialogue design problem and a user who
ignored clear system feedback. A second transaction failure occurred solely because
the user did not pay sufficient attention to the system’s feedback which made it clear
that the user had been misunderstood (Figures 3, 4, 5 and 6). Three of the seven de-
tected E2 cases occurred in this dialogue in which the user continuously ignored the
system feedback on dates (Figures 4, 5 and 6). Thus, four out of the seven detected
cases of ignored system feedback had severe implications for the success of the trans-
action. Moreover, had the user test included a real recogniser, more cases of system
misunderstanding would have occurred and hence more cases in which users would
have had to identify system misrecognitions from the system’s feedback.

E2 raises the issue of encouraging test subjects to ‘act’ seriously in dialogue with the
system and be very attentive to what the system says because recognition in SLDSs is
much more error-prone than the hearing capabilities of normal humans. This would
help reducing the number of user errors caused by their ignoring system feedback.
Nothing is gained by having subjects who care too little about what is going on during
the dialogue. Whatever preventive measures are taken, however, the problem of user
inattentiveness is not likely to completely go away. This is true of both ‘artificial’ user
tests and real-life use of commercial systems.

The notion of a transaction failure that is caused by a ‘clean’ user error may be con-
troversial. It might be argued that transaction failures should be caused by systems
design errors of one kind or another. On the other hand, it might be said that most
user errors of ignoring clear system feedback only arise because the system has mis-
understood the user in the first place. This problem does not seem to have any obvi-
ous solution. Whatever one chooses to do, this should be made clear in the definition
of ‘transaction failure’ adopted because the resulting transaction failure percentage
constitutes an important quantitative measure of system performance.

E3. Responding to a Question Different from a Clear System Question

E3 has at least two sub-types. The first sub-type, E3a, included four cases in which
users gave a straight wrong response to a system question, for instance by answering
“Saturday” to the question about departure airport. In one case the answer was not

understood by the system and in three cases it was misunderstood. E3a raises the
same issue as did E2 of encouraging users to seriously pay attention to the system’s
utterances. Similarly, E3a errors are not likely to go away completely, neither in ‘arti-
ficial’ user tests nor in real-life interaction.

The second sub-type, E3b, concerns indirect user responses. For instance, a user an-
swered “it must be cheap” to the question of hour of departure. In human-human con-
versation, indirect answers of this type would be perfectly all right. An indirect re-
sponse indicates that the speaker does not possess the information necessary to pro-
vide a direct answer. In response to the indirect user answer quoted above, a human
travel agent would list the relevant departures on which discount may be obtained.
Our SLDS, however, has limited inferential capabilities and is not able to cope with
indirect responses. They will be either not understood or misunderstood.

E3b is among the most challenging types of user errors in the test material. Indirect
responses are natural to humans in situations in which they do not have sufficient in-
formation to produce a direct response. In such cases, we provide instead the informa-
tion that we actually possess, leaving it to the interlocutor to infer the information
asked for. We do this cooperatively, of course, only in cases in which the interlocutor
can be assumed to have the information needed to perform the inference. The system,
posing as a perfect domain expert, may legitimately be assumed to possess the re-
quired information. What the user overlooks, however, is that the system does not
have the capability to draw the proper inferences from the user’s information. The
E3b cases, therefore, raise the hard issue of the extent to which dialogue designers
should consider providing their system with the appropriate inferential skills. There
does not currently appear to exist a principled answer to this problem. Furthermore, it
may be argued that indirect user responses are not user errors at all. They do not con-
flict with the system’s introduction (Figure 1). At best it might be argued that indirect
responses conflict with the difficult requirement on users which we have called ‘im-
plicit instructions’ to users (see above). If, however, we are right in the above inter-
pretation of E3b-type user contributions, they are in fact oblique questions asking for
information (see E5 below). We shall return to E3b in the concluding discussion.

E4. Change through Comments

E4 gave rise to numerous (almost 30%) user errors in the test. In 16 out of 17 cases,
users tried to make corrections through natural sentences rather than by using the key-
words prescribed in the system’s introduction (Figure 1). An example is shown in
Figure 4. In none of these cases was the requested correction understood as intended.
Only in one case did the user achieve the intended correction. In this case, the user
used a keyword different from ‘change’ but meaning the same, which accidentally
was recognised as ‘change’. The theoretical importance of these findings is that of
emphasising the undesirability of including designer-designed user keywords in dia-
logue design for SLDSs. Such keywords will neither correspond to the keywords pre-
ferred by all or most users nor to the natural preference among native speakers to re-
ply in spoken sentence form rather than through keywords. It is furthermore our hy-

pothesis that the more cognitive load a user has at a certain stage during dialogue task
performance, the more likely it is that the user will ignore the system’s instructions
concerning the specific keywords to be used.

E4 raises the hard issue of allowing users a more natural form of repair meta-
communication.

E5. Asking Questions

E5 is among the most challenging types of user errors in the test material and is
closely related to E3b (see above). Like the E3b cases, the E5 cases all occur when
the system has asked for an hour of departure. For instance, a user then asked “what
are the possibilities?”. What the observed cases show is that reservation dialogue, in
its very nature, so to speak, is informed reservation dialogue. It is natural for users
who are making a reservation or, more generally, ordering something, that they do not
always possess the full information needed to decide what to do. In such cases, they
ask for the information. Since the system poses as a perfect domain expert, this is le-
gitimate. What users overlook, however, and despite what was said in the system’s
introduction (Figure 1), is that the system does not have the skills to process their
questions. As with E3b above, it is not clear what the dialogue designer should do
about this problem in the short term. Current systems are not likely to be able to un-
derstand all possible and relevant user questions in the context of reservation tasks.
The optimistic conclusion is that E3b and E5 only constituted 4 user errors in total in
the user test, and that skilled users of the system will learn other ways of eliciting the
system’s knowledge about departure times. However, a principled solution to the
problem only seems possible through enabling the system to conduct rather sophisti-
cated mixed-initiative domain dialogue.

E6. Answering Several Questions at a Time

E6 has at least two sub-types. The first sub-type, E6a, gave rise to many (about 16%)
user errors in the test. Examples are a user who answers “the journey starts on Friday
at 8:15” when asked for a date of departure, and a user who answers “no, change”
when asked if it is correct that the destination is Karup. Other examples are shown in
Figures 8 and 9. In 7 of the 10 cases, only the part of the user’s response which an-
swered the system’s question was understood. In the remaining 3 cases the entire user
response was misunderstood. What this error type suggests is that (i) users naturally
store information in ‘packages’ consisting of several pieces of information. This
means that they are unlikely to consistently split these packages into single pieces of
information despite having been told to do so in the system’s introduction (Figure 1).
Dialogue designers should be aware of the existence of such natural information
packages and enable their system to understand them. (ii) Users have stereotypical
linguistic response patterns, such as prefixing a ‘change’ keyword with a ‘no’. Dia-
logue designers should be aware of these natural stereotypes and enable the system to
understand them. This problem appears solvable by today’s technology. Our SLDS is
already able to accept such stereotypes in several cases, such as when information on

departure and arrival airports is being provided in the same utterance. However, due
to the present, strong limitations on active vocabulary we have not been able to allow
natural information packages and stereotypes throughout the reservation dialogue.

The second sub-type, E6b, illustrates a phenomenon which no feat of dialogue design
is likely to remove, i.e. the naturally occurring slips-of-the-tongue in spontaneous
speech. Slips do not appear to constitute any major problem, however. Only one slip
causing an interaction problem occurred in the entire corpus: when asked for the cus-
tomer number, the user said “four, no sorry, change, change”. Only the number was
recognised forcing the user to change it in the following utterance.

E7. Thinking Aloud

E7 illustrates another phenomenon which no dialogue design effort is likely to re-
move, i.e. the naturally occurring thinking-aloud in spontaneous speech. Thinking-
aloud does not appear to constitute a major problem, however. Only one case of natu-
ral thinking-aloud occurred in the entire corpus: when asked for the hour of departure,
the user said “well, let me see, at 8:30 at the latest”.

E8. Non-Cooperativity

E8 illustrates yet another phenomenon which cannot be removed through dialogue
design, i.e. the deliberately non-cooperative user. Only one case of deliberate user
non-cooperativity was detected in the test corpus. The user replied “the ticket should
not be sent” to the system’s question of whether the ticket should be sent or would be
picked up at the airport. This reply would not have been considered non-cooperative
if produced in human-human conversation. However, the reply is unnecessarily com-
plex and cannot be handled by our SLDS. We know that the particular user who
caused the problem was deliberately testing the hypothesis that the system would be
unable to handle the input because she said so in the telephone interview following
her interaction with the system. SLDSs designers have no way of designing dialogues
with sufficient robustness to withstand deliberately non-cooperative users. Nor should
SLDSs designers attempt to do so, apart, of course, from ensuring that the system will
not break down and that deliberately non-cooperative users cannot cause any harm.
The simple fact is that deliberately non-cooperative users, when successful, will fail to
get their task done.

5 Conclusion
The E1 errors are of only minor importance as they will disappear when the system is
being used in real life. Furthermore, the evidence suggests that E1 errors do not tend
to cause severe dialogue interaction problems. Similarly, E8 errors are of minor im-
portance because users will stop experimenting with the system when they want the
task done. E6b and E7 can hardly be prevented but, at least according to our test ma-
terial, they are infrequent and do not cause severe problems of interaction.

E2 and E3a seem to have a much larger effect on dialogue transaction success. Al-
though they can hardly be completely avoided, it is likely that their number can be
reduced by clearly making users aware of the importance of paying attention to sys-
tem feedback and system questions. Real-life users are likely to be more attentive.

E3b, E4, E5 and E6a are the most challenging user error types found in the corpus.
They would all be perfectly acceptable in human-human dialogue. However, because
of the limited dialogue capabilities of our SLDS, it is clearly stated in the system’s
introduction how users should interact with it in order to prevent these errors.
Whereas E3b is less clear (see Section 4 above), the E4, E5 and E6a errors all violate
the system’s explicit instructions. The important question is why so many users vio-
late exactly these instructions. A likely explanation is that, at least for many users, it is
not cognitively feasible to follow the system’s explicit instructions. In an extreme ex-
ample: had we asked users to always use exactly four words in their responses to the
system’s questions, this would clearly have been cognitively infeasible. Similarly,
several of the things which the system’s introduction asks users to do or avoid doing
turn out to be unrealistic given the dialogue behaviour that is natural to most people.
This reveals a fundamental shortcoming in our initial concept of ‘user error’ (Section
4). It is not sufficient to provide clear and explicit instructions to users on how to in-
teract with the system. It must also be possible for users, such as they are, to follow
these instructions in practice. The conclusion is that E3b, E4, E5 and E6a are not user
errors at all but rather constitute more or less difficult problems of dialogue design.

E3b, E4, E5 and E6a are otherwise very different. E3b and E5 result from a mismatch
between generic task type (ordering) and the type of dialogue initiative adopted for
the application (system-directed domain communication). E4 and E6a belong to a
much more general class of human-machine interaction problems. For years, in fact,
experts on human error in the field of human factors have been aware of the broad
category of errors illustrated by E4 and E6a. The reason why they are easy to over-
look during design and until the user and field test data come in, is that, in principle,
we can all avoid them. For instance, we can all easily say ‘change’ when we want to
correct a system misunderstanding. During actual task performance, however,
whether the task be one of driving a car or communicating with an SLDS, we tend to
fall back on our natural skills and what is inherent to the human cognitive processing
architecture, more or less ignoring rules or instructions that conflict with those skills
and that architecture.

What are the implications of the findings reported in this paper? We emphatically do
not want to argue that, because of problems such as E3b, E4, E5 and E6a, SLDSs of
the same general type as ours cannot be used in realistic applications. None of these
problems caused transaction failure. The E6a problems can be removed using current
dialogue design techniques (Section 4). The E3b and E5 problems were few. And the
E4 problems, of which there were many, might at least be reduced in number through
a larger active vocabulary. Of course, user-system interaction can and should be im-
proved through many other means than those addressing the occurrence of user errors.

We have discussed such means in our analysis of the dialogue design errors that were
identified in the user test corpus [6]. The present paper has focused on how and to
what extent user errors can be prevented.

Acknowledgements
The Danish dialogue system was developed in collaboration between the Center for
PersonKommunikation at Aalborg University (speech recognition, grammar), the
Centre for Language Technology, Copenhagen (grammar, parsing), and the Centre for
Cognitive Science, Roskilde University (dialogue and application design and imple-
mentation, human-machine aspects). The project was supported by the Danish Re-
search Councils for the Technical and the Natural Sciences. We gratefully acknowl-
edge the support.

References
[1] H. Aust, and M. Oerder, Dialogue Control in Automatic Inquiry Systems, Pro-

ceedings of the ESCA Workshop on Spoken Dialogue Systems, Vigsø, 121-124,
1995.

[2] N.O. Bernsen, H. Dybkjær and L. Dybkjær, Exploring the Limits of System-
directed Dialogue. Dialogue Evaluation of the Danish Dialogue System, Proceed-
ings of Eurospeech ‘95, Madrid, 1457-60, 1995.

[3] R. Cole, D.G. Novick, M. Fanty, P. Vermeulen, S. Sutton, D. Burnett and J.
Schalkwyk, A Prototype Voice-Response Questionnaire for the US Census, Pro-
ceedings of the ICSLP ‘94, Yokohama, 683-686, 1994.

[4] H. Dybkjær, N.O. Bernsen and L. Dybkjær, Wizard-of-Oz and the Trade-off be-
tween Naturalness and Recogniser Constraints. Proceedings of Eurospeech ‘93,
Berlin,. 947-50, 1993.

[5] L. Dybkjær, N.O. Bernsen and H. Dybkjær, Evaluation of Spoken Dialogues.
User Test with a Simulated Speech Recogniser. Report 9b from the Danish Pro-
ject in Spoken Language Dialogue Systems. Roskilde University, February 1996.
3 volumes of 18 pages, 265 pages, and 109 pages, respectively.

[6] L. Dybkjær, N.O. Bernsen and H. Dybkjær, Reducing Miscommunication in Spo-
ken Human-Machine Dialogue. Proceedings of AAAI ‘‘96 Workshop on detecting
repairing and preventing human-machine miscommunication, Portland, 1996.

[7] W. Eckert, E. Nöth, H. Niemann and E. Schukat-Talamazzini, Real Users Behave
Weird - Experiences Made Collecting Large Human-Machine-Dialog Corpora,
Proceedings of the ESCA Workshop on Spoken Dialogue Systems, Vigsø, 193-
196, 1995.

[8] N.M. Fraser and G.N. Gilbert, Simulating Speech Systems, Computer Speech and
Language 5, 81-99, 1991.

