
User Errors in
Spoken Human-Machine Dialogue

Niels Ole Bernsen, Laila Dybkjær and Hans Dybkjær1

Abstract. Controlled user testing of the dialogue component of spoken
language dialogue systems (SLDSs) has a natural focus on the detection,
analysis and repair of dialogue design problems. Not only dialogue
designers and their systems commit errors, however. Users do so as well.
Improvement of dialogue interaction is not only a matter of reducing the
number and severity of dialogue design problems but also of preventing the
occurrence of avoidable user errors. Based on a controlled user test of the
dialogue component of an implemented SLDS, the paper takes a systematic
look at the dialogue errors made by users in the test corpus. A typology of
user errors in spoken human-machine dialogue is presented and discussed,
and potentially important dialogue design advice derived from the fact that
the notion of a ‘user error’ turns out to be one that must be handled with
care.1

1 INTRODUCTION
This paper is based on a controlled user test of the dialogue
component of the Danish dialogue system which is an advanced
spoken language dialogue system (SLDS). When analysing the
data from such tests, the natural focus is on dialogue design errors.
Such errors have to be identified and diagnosed, and ways of
remedying them must be found whenever possible. Dialogue
design errors cause problems of user-system interaction, make user
task performance unnecessarily bumpy and generate user
dissatisfaction with SLDS technology. However, not everything
that goes wrong in the dialogue between user and system is due
solely to errors made by the dialogue designers. Users also make
errors during dialogue and some interaction problems are the
compound effect of dialogue design errors and user errors. This
paper proposes to take a systematic look at the dialogue errors
made solely by users. Based on the user test material, we ask: of
which types are the user errors that were identified? What are their
likely effects on the success of the dialogue? What, if anything, can
be done about them? And what is a “user error in dialogue” in the
first place?
 The Danish SLDS prototype is a ticket reservation system for
Danish domestic flights. The system runs on a PC with a DSP
board and is accessed over the telephone. It is a walk-up-and-use
application which understands speaker-independent continuous
spoken Danish with a vocabulary of about 500 words. The
prototype runs in close-to-real-time and is representative of
advanced current systems. Comparable SLDSs are found in [1,3,7].
The system has five main modules. The speech recogniser
produces a 1-best string of words. The parser makes a syntactic
analysis of the string and extracts the semantic contents which are
represented in frame-like structures. The dialogue handling module
interprets the contents of the semantic objects and decides on the
next system action which may be to send a query to the application
database, send output to the user, or wait for new input. In the

1 Centre for Cognitive Science, Roskilde University, PO Box 260, 4000

Roskilde, Denmark, emails: nob@cog.ruc.dk, dybkjaer@cog.ruc.dk,
laila@cog.ruc.dk, phone: +45 46 75 77 11 fax: +45 46 75 45 02

latter case, predictions on the next user input are sent to the
recogniser and the parser. Output is produced by concatenating
pre-recorded phrases under the control of the dialogue module.
 In what follows, Section 2 provides a description of the dialogue
model for the Danish dialogue system and presents an example
dialogue from the user test. The user test is described in Section 3.
Section 4 presents an analysis of the user errors that were identified
in the user test. Section 5 concludes the paper.

2 THE DIALOGUE MODEL
The dialogue model for the Danish dialogue system was developed
by the Wizard of Oz (WOZ) experimental prototyping method in
which a person simulates the system to be designed in dialogue
with users who are made to believe that they interact with a real
system [8]. The dialogue model had to satisfy the following
technological constraints imposed by the speech recogniser: to
ensure real-time performance, at most 100 words could be active
in memory at a time; to ensure an acceptable recognition rate, an
average and a maximum user utterance length of 3-4 words and 10
words, respectively, were imposed. Other design goals, such as
linguistic naturalness, dialogue naturalness and dialogue flexibility
had to be traded off against these constraints [4].
 The WOZ dialogue model development was iterated until the
model satisfied the design constraints. In each iteration, the
dialogues were recorded, transcribed, analysed and used as a basis
for improvements on the dialogue model. We performed seven
WOZ iterations yielding a transcribed corpus of 125 task-oriented
human-machine dialogues corresponding to approximately seven
hours of spoken dialogue. The 94 dialogues that were recorded
during the last two iterations were performed by external subjects
whereas only system designers and colleagues had participated in
the earlier iterations. A total of 24 different subjects were involved
in the seven iterations. Dialogues were based on written
descriptions of reservation tasks (scenarios).
 The dialogue model resulting from the WOZ iterations is mixed-
initiative. Domain communication is system-directed. Domain
communication is communication within or about the task domain.
Because of the strong limitations on active vocabulary size (see
above), it was necessary during domain communication to leave
the main initiative with the system. The system maintains dialogue
initiative by concluding all its turns by a non-open question to the
user, i.e. a question which asks for a well-defined piece of
information, such as a choice between binary options, a date or
time, or a destination. A field study was made of the most natural
order in which to exchange the needed information. The
implemented task structure conforms to the most common structure
found in human-human domestic airline ticket reservation
dialogues recorded in a travel agency. Whereas domain
communication is system-directed, users can take the initiative in
meta-communication with the system. Meta-communication is

communication about the user-system communication itself and is
usually being undertaken for purposes of clarification or repair.
Whenever needed, users may initiate meta-communication to
resolve misunderstanding or lack in understanding by using one of
the keywords ‘change’ and ‘repeat’. The system initiates meta-
communication by saying “Sorry, I did not understand” or by
asking the user, after a long pause, “Are you still there?”
 In addition to contributions to meta-communication and to the
achievement of particular reservation tasks, the system provides
two pieces of general information: (i) the system’s introduction
provides information on what the system can and cannot do and
how to interact with it (Figure 1). (ii) An explanation is provided of
the different types of discount that are possible on return tickets. In
order not to waste the time of experienced users, the system
provides this information only to novice users. Figure 3 shows a
dialogue from the user test of the implemented system. The
dialogue is based on the scenario shown in Figure 2. The user has
already made one reservation and continues without making a new
call, thereby avoiding the introductory phrases shown in Figure 1.
Dialogue and scenario examples have been translated from the
Danish.

S1: Hello, this is the DanLuft reservation service for domestic

flights. Do you know how to use this system?
U1: No.
S2a: The system can reserve tickets for Danish domestic flights.

You use it by answering the system’s questions. In addition
you may use the two special commands “repeat” and
“change” to have the most recent information repeated or
changed. The system will only understand you when you
answer its questions briefly and one at a time.

S2b: Please state your customer number.

Figure 1. The introduction (S2a) to the Danish dialogue system. S means

system, U means user.

Anders Bækgaard (ID-number 6), Paul Dalsgaard (ID-number 3)
and Børge Lindberg (ID-number 4) work in a department in
Aalborg that has customer number 3. They are all going to
Copenhagen on the first weekend in February. They want to depart
by the earliest flight on Saturday at 7:20 and return by the latest
flight on Sunday at 22:40.

Figure 2. The scenario T32.

3 THE USER TEST
The user test was carried out with a simulated speech recogniser
[2]. A wizard keyed in the users’ answers into the simulated
recogniser. The simulation ensured that typos were automatically
corrected and that input to the parser corresponded to an input
string which could have been recognised by our real speech
recogniser. In this set-up, the recognition accuracy would be 100%
as long as users expressed themselves in accordance with the
vocabulary and grammars known to the system. Otherwise, the
simulated recogniser would turn the user input into a string which
only contained words and grammatical constructions from the
recogniser's vocabulary and rules of grammar.
 The test was based on 20 different scenarios which had been
constructed to enable exploration of all aspects of the task
structure. As the flight ticket reservation task is a well-structured

task in which a prescribed amount of information must be
exchanged between user and system, it was possible to extract from
the task structure a set of sub-task components, such as number of
travellers, age of traveller and discount versus normal fare, any
combination of which should be handled by the system. The
scenarios were generated from systematically combining these
components.
 Twelve novice subjects, mostly professional secretaries,
participated in the user test. The subjects conducted the scenario-
based dialogues over the telephone in their normal work
environments in order to make the task as realistic as possible. The
subjects were given a total of 50 tasks based on 48 scenarios. A
task consists in ordering one or more tickets for one route. The
number of recorded dialogues was 57 because subjects sometimes
reiterated a failed dialogue and eventually succeeded in the task. A
dialogue is one path through the dialogue structure. Subjects failed
on seven tasks. The task transaction success rate thus was 43/50%
= 86%.
 Each dialogue was recorded and all transactions between the
individual system modules were logged. The recorded dialogues
were transcribed and analysed. The analysis aimed at detecting
dialogue interaction problems and was done as follows. Based on
the dialogue structure, a template was built which contained the
system’s questions. For each scenario, normative system questions
and user answers were filled into the template. The key contents of
the actual dialogues were then plotted into the template.
Comparison between normative and actual system and user
answers led to the identification of three major classes of
interaction problems: (1) linguistic problems, (2) problems of
dialogue interaction, and (3) other problems, such as system
breakdown. (2) splits into (A) dialogue design problems and (B)
user errors. The dialogue design problems (A) identified in the user
test are presented and discussed in [6]. The following section
focuses on describing and illustrating (B).

4. USER ERRORS
The concept of a ‘user error’ is a complex one, as we shall see. For
now, let us define a user error as a case in which a user does not
behave in accordance with the full normative model of the
dialogue. In controlled user testing, the full normative model of the
dialogue is defined by (i) explicit designer instructions to users, i.e.
the scenarios that users have to carry out in dialogue with the
system; (ii) explicit system instructions to users, such as the
system’s introduction to itself (Figure 1); (iii) explicit system
utterances during dialogue; and (iv) implicit system “instructions”
to users. (i) through (iv) will be illustrated and discussed below. (i)
is absent in field testing of systems and in practical system use. In
such cases, the full normative dialogue model reduces to (ii)-(iv).
(ii) is very important to SLDS design and use because SLDSs are
vastly inferior dialogue partners when compared to humans. This
means that humans must be told how to interact with an SLDS lest
they treat the system as a human dialogue partner. Users, of
course, should react appropriately to the system’s utterances
during dialogue (iii), given their scenarios and the dialogue
context. The need to in-
S1: Do you want anything else?
U1: Yes.
S2: Customer number 4. Is that correct?
U2: No, customer number 3.

S3: Customer number 10 does not exist. Please state your
customer number.

U3: Customer number 3.
S4: Customer number 3.
U (overlapping speech): Yes.
S4 (continued): How many people will travel?
U4: Three people.
S5: Three people. Please state the id-number of the first person.
U5: Number 6.
S6: Please state the id-number of the second person.
U6: Number 3.
S7: Please state the id-number of the third person.
U7: Number 4.
S8: Id-numbers 6, 3 and 4, Anders Bækgaard, Paul Dalsgaard

and Børge Lindberg. Where does the journey start?
U8: The journey starts in Aalborg.
S9: From Aalborg. Where does the journey end?
U9: In Copenhagen.
S10: In Copenhagen. Do you want a return ticket?
U10: Yes.
S11: Are you particularly interested in discount?
U11: Yes.
S12: On which date will the journey start?
U12: The first weekend in February.
S13: Friday February 10th. At which time?
U13: It must be on Saturday at 7:20. E2, E4, E6a
S14: There is no departure at 7:20. The closest other red

departure is at 10:50. Do you want this departure?
U14: No.
S15: At which time?
U15: Saturday at 7:20. E6a
S16: There is no departure at 7:20. The closest other red

departure is at 10:50. Do you want this departure?
U16: Yes.
S17: On which date will the return journey start?
U17: On Sunday February 5th.
S18: Sunday February 12th. At which time?
U18: 22:40. E2
S19: 22:40. You have now booked 3 tickets for Anders Bæk-

gaard, Paul Dalsgaard and Børge Lindberg from Aalborg to
Copenhagen on Friday February 10th at 10:50 returning on
Sunday February 12th at 22:40. The tickets are on green
conditions. Your reference number is 51. The total price is
2820 kroner. Are the tickets to be mailed or will the
travellers pick them up at the airport?

U19: They should be mailed. E2
S20: The tickets will be mailed about one week before the

departure. Do you want anything else?
U20: Yes.

Figure 3. The dialogue T32a from the user test of the Danish dialogue
system (translated from the Danish) [5]. The dialogue is based on the

scenario shown in Figure 2. S means system, U means user. Utterances
marked with an E and a number contain user errors and are discussed in

more detail in Section 4.

clude (iv) follows from the important fact that it is impractical to
explicitly inform users about all the types of behaviour theyshould
avoid during dialogue with the system. Rather, users should be
made to grasp the general fact that the system is a severely
restricted dialogue partner which should be treated accordingly.

 According to the above definition of ‘user error’, 102 individual
user errors were found in the user test corpus which contains a total
of 998 user utterances. A single utterance may contain several
errors. Each user error was characterised with respect to its context,
its nature was explained and, whenever possible, a preventive
measure was proposed. The six user errors identified in the
dialogue shown in Figure 3 are analysed in Figures 4 to 9. E(n)
refers to the user error typology in Table 1. ER means error, EX
means explanation, PM means preventive measure. S means
system, U means user. The number succeeding each S and U refers
to the dialogue in Figure 3. The dialogue was a transaction failure.
The error which is considered the direct cause of the transaction
failure is indicated by an italicised dialogue number.

ER: S12: On which date will the journey start? U12: The first
weekend of February. S13: Friday February 10th. At which time?
U: It must be Saturday at 7:20.
EX: The user ignores the date fed back by the system and only
tries to change Friday into Saturday.
PM: People sometimes do not listen sufficiently carefully. They
may also care less in experimental settings than in real life.

Figure 4. A user error identified in the dialogue shown in Figure 3. The
error is of type E2: Ignoring clear system feedback. This error was

considered a direct cause of the transaction failure.

ER: S17: On which date will the return journey start? U17: On
Sunday February 5th. S18: Sunday February 12th. At which time?
U18: 22:40.
EX: The user ignores the system feedback on date.
PM: People sometimes do not listen sufficiently carefully. They
may also care less in experimental settings than in real life.

Figure 5. A user error identified in the dialogue shown in Figure 3. The
error is of type E2: Ignoring clear system feedback. This error was

considered a direct cause of the transaction failure.

ER: S19: You have now booked ... on Friday February 10th at
10:50 returning on Sunday February 12th at 22:40 ... at the airport?
U19: They should be mailed.
EX: The user ignores the system feedback on date.
PM: People sometimes do not listen sufficiently carefully. They
may also care less in experimental settings than in real life.

Figure 6. A user error identified in the dialogue shown in Figure 3. The
error is of type E2: Ignoring clear system feedback. This error was

considered a direct cause of the transaction failure.

ER: S13: Friday February 10th. At which time? U13: It must be
Saturday at 7:20.
[Continued on the next page.]
EX: The user is too occupied with the present problem to
remember to use ‘change’ when trying to change Friday into
Saturday.
PM: ‘Change’ is not natural. Prefer mixed-initiative meta-
communication.

Figure 7. A user error identified in the dialogue shown in Figure 3. The
error is of type E4: Change through comments.

ER: S13: Friday February 10th. At which time? U13: It must be
Saturday at 7:20.

EX: Natural user response package.
PM: Allow naturally related information, such as date and time, to
be provided in the same user answer.

Figure 8. A user error identified in the dialogue shown in Figure 3. The
error is of type E6: Answering several questions at a time.

ER: S: At which time? U: Saturday at 7:20.
EX: Natural user response package.
PM: Allow naturally related information, such as date and time, to
be given in the same user answer.

Figure 9. A user error identified in the dialogue shown in Figure 3. The
error is of type E6: Answering several questions at a time.

A more thorough analysis of the user errors revealed, however, that
a significant number were caused by problems in the design of the
system’s dialogue contributions. For instance, users responded
differently from what they should have responded according to the
scenario because of missing system feedback or because a system
question was too open and invited users to respond in ways which
we had not intended. We shall ignore such cases and focus on the
dialogue errors that were made solely by users. This leaves 61
individual user errors for discussion in what follows.
 The remaining 61 user errors are of eight different types as
shown in Table 1. Two error types (E3 and E6) were divided into
sub-types. E1 includes the scenario violations, i.e. violations of
explicit designer instructions. E2 and E3a include cases in which
users did not pay attention to explicit system utterances (feedback
and questions). E3b is closely related to E5 (see below). E3b, E4,
E5, E6 and E7 represent violations of explicit system instructions
provided in the system’s introduction (Figure 1). In E8 the user
violates implicit system instructions. We will now discuss each
error type in more detail.

E1. Misunderstanding the scenario
As remarked earlier, scenario misunderstandings are artefacts of
controlled user testing. Nevertheless, controlled user testing is
important in systems design and it may be worth considering ways
of preventing user errors in controlled test environments. It should
be noted that scenario misunderstandings cannot give rise to
transaction failure. Transaction failure occurs only when users do
not obtain the reservation they actually ask for. In fact, scenario
misunderstandings rarely lead to other forms of dialogue
interaction problems. Users just carry out a different scenario. On
the other hand, this may affect system evaluation. A scenario
which is not carried out may result in that part of the dialogue
model remains untested.

Table 1. The identified user error types and sub-types.

Error Types Error Sub-Types No. of
Cases

Preventive
Measure

E1.
Misunderstanding of
scenario

a. Careless reading
or processing

14 Use clear scenarios,
carefully studied, to
reduce errors.

E2. Ignoring clear
system feedback

a. Straight ignorance 7 Encourage user
seriousness to
reduce errors.

E3. Responding to a
question different
from the clear

a. Straight wrong
response

4 Encourage user
seriousness to
reduce errors.

system question b. Indirect response 3 Disguised dialogue
design problem..

E4. Change through
comments (including
“false” keywords)

a. Cognitive
overload

17 Disguised dialogue
design problem..

E5. Asking questions a. Asking for
decision-relevant
information

3 Disguised dialogue
design problem..

E6. Answering
several questions at a
time

a. Natural response
“package”

10 Disguised dialogue
design problem.

 b. Slip 1 None.
E7. Thinking aloud a. Natural thinking

aloud
1 None.

E8. Non-
cooperativity

a. Unnecessary
complexity

1 None.

Almost one fourth of the 61 user errors were due to users acting
against the instructions in the scenarios. These errors were of three
(task-dependent) kinds: (a) users asked for one-way tickets instead
of return tickets; (b) users were not interested in discount although
according to the scenario they should be; and (c) users tended to
miscalculate the date of departure if only given indirectly in the
scenario. It seems likely that the main reason for the many scenario
misunderstandings is the artificial experimental situation. People
care less in an experiment than they do in real life and therefore
tend not to prepare themselves sufficiently for the dialogue with
the system. In addition, unclear scenarios cause errors. E1 thus
raises two issues in the preparation of controlled user testing: (i) to
reduce the number of errors, scenarios should be made as clear as
possible. Nothing is gained by unclear or misleading scenarios.
Clear scenarios should not be confused with simple scenarios.
Scenarios should reflect the types of information real users actually
have when addressing the system. This information may be
complex and some scenarios should reflect that. This means that
users may have to perform some mental processing of the scenario
information in order to provide correct answers to the system’s
questions. (ii) Users should be encouraged to carefully prepare
themselves on the scenarios they are to complete in conversation
with the system. This should mirror the interest real users have in
getting the system to deliver what they want.
 Whatever preventive measures are taken, however, scenario
misunderstandings are not likely to be totally absent from
controlled user tests but reducing their number is an important
goal.
E2. Ignoring clear system feedback
The speech recognition capabilities of most telephone-based
systems are still fragile. It is therefore important that users listen
carefully to the system’s feedback to verify that they have been
correctly understood. Of the seven transaction failures in the user
test, one was caused by a combination of a dialogue design
problem and a user who ignored clear system feedback. A second
transaction failure occurred solely because the user did not pay
sufficient attention to the system’s feedback which made it clear
that the user had been misunderstood (Figures 3, 4, 5 and 6). Three
of the seven detected E2 cases occurred in this dialogue in which
the user continuously ignored the system feedback on dates
(Figures 4, 5 and 6). Thus, four out of the seven detected cases of
ignored system feedback had severe implications for the success of
the transaction. Moreover, had the user test included a real
recogniser, more cases of system misunderstanding would have

occurred and hence more cases in which users would have had to
identify system misrecognitions from the system’s feedback.
 E2 raises the issue of encouraging test subjects to “act” seriously
in dialogue with the system and be very attentive to what the
system says because recognition in SLDSs is much more error-
prone than the hearing capabilities of normal humans. This would
help reducing the number of user errors caused by their ignoring
system feedback. Nothing is gained by having subjects who care
too little about what is going on during the dialogue. Whatever
preventive measures are taken, however, the problem of user
inattentiveness is not likely to completely go away. This is true of
both “artificial” user tests and real-life use of commercial systems.
 The notion of a transaction failure that is caused by a “clean”
user error may be controversial. It might be argued that transaction
failures should be caused by systems design errors of one kind or
another. On the other hand, it might be said that most user errors of
ignoring clear system feedback only arise because the system has
misunderstood the user in the first place.

E3. Responding to a question different from a clear
system question
E3 has at least two sub-types. The first sub-type, E3a, includes four
cases in which users gave a straight wrong response to a system
question, for instance by answering “Saturday” to the question
about departure airport. In one case the answer was not understood
by the system and in three cases it was misunderstood. E3a raises
the same issue as did E2 of encouraging users to seriously pay
attention to the system’s utterances. Similarly, E3a errors are not
likely to go away completely, neither in “artificial” user tests nor in
real-life interaction.
 The second sub-type, E3b, concerns indirect user responses. For
instance, a user answered “it must be cheap” to the question of
hour of departure. In human-human conversation, indirect answers
of this type would be perfectly all right. An indirect response
indicates that the speaker does not possess the information
necessary to provide a direct answer. In response to the indirect
user answer quoted above, a human travel agent would list the
relevant departures on which discount may be obtained. Our SLDS,
however, has limited inferential capabilities and is not able to cope
with indirect responses. They will be either not understood or
misunderstood.
 E3b is among the most challenging types of user errors in the test
material. Indirect responses are natural to humans in situations in
which they do not have sufficient information to produce a direct
response. In such cases, we provide instead the information that we
actually possess, leaving it to the interlocutor to infer the
information asked for. We do this cooperatively, of course, only in
cases in which the interlocutor can be assumed to have the
information needed to perform the inference. The system, posing as
a perfect domain expert, may legitimately be assumed to possess
the required information. What the user overlooks, however, is that
the system does not have the capability to draw the proper
inferences from the user’s information. The E3b cases therefore
raise the hard issue of to which extent the dialogue designers
should consider providing their system with the appropriate
inferential skills. There does not currently appear to exist a
principled answer to this problem. Furthermore, it may be argued
that indirect user responses are not user errors at all. They do not
conflict with the system’s introduction (Figure 1). At best it might
be argued that indirect responses conflict with the difficult

requirement on users which we have called ‘implicit instructions’
to users (see above). If, however, we are right in the above
interpretation of E3b-type user contributions, they are really
oblique questions for information (see E5 below). We shall return
to E3b in the concluding discussion.

E4. Change through comments
E4 gave rise to numerous (almost 30%) user errors in the test. In 16
out of 17 cases, users tried to make corrections through natural
sentences rather than by using the keywords prescribed in the
system’s introduction (Figure 1). An example is shown in Figure 4.
In none of these cases was the requested correction understood as
intended. Only in one case did the user achieve the intended
correction. The user used a keyword different from ‘change’ but
meaning the same, which accidentally was recognised as ‘change’.
The theoretical importance of these findings is that of emphasising
the undesirability of including designer-designed user keywords in
dialogue design for SLDSs. Such keywords will neither correspond
to the keywords preferred by all or most users nor to the natural
preference among native speakers to reply in spoken sentence form
rather than through keywords. It is furthermore our hypothesis that
the more cognitive load a user has at a certain stage during
dialogue task performance, the more likely it is that the user will
ignore the system’s instructions concerning the specific keywords
to be used.
 E4 raises the hard issue of allowing users a more natural form of
repair meta-communication.

E5. Asking questions
E5 is among the most challenging types of user errors in the test
material and is closely related to E3b (see above). Like the E3b
cases, the E5 cases all occur when the system has asked for an hour
of departure. For instance, a user then asks “what are the
possibilities”. What the observed cases show is that reservation
dialogue, in its very nature, so to speak, is informed reservation
dialogue. It is natural for users who are going to make a reservation
or, more generally, order something, that they do not always
possess the full information needed to decide what to do. In such
cases, they ask for the information. Since the system poses as a
perfect domain expert, this is legitimate. What users overlook,
however, and despite what was said in the system’s introduction
(Figure 1), is that the system does not have the skills to process
their questions. As with E3b above, it is not clear what the dialogue
designer should do about this problem in the short term. Current
systems are not likely to be able to understand all possible and
relevant user questions in the context of reservation tasks. The
optimistic conclusion is that E3b and E5 only constitute 4 user
errors in total and that skilled users of the system will learn other
ways of eliciting the system’s knowledge about departure times.
However, a principled solution to the problem only seems possible
through enabling the system to conduct rather sophisticated mixed-
initiative domain dialogue.

E6. Answering several questions at a time
E6 has at least two sub-types. The first sub-type, E6a, gave rise to
many (about 16%) user errors in the test. Examples are a user who
answers “the journey starts on Friday at 8:15” when asked for a

date of departure, and a user who answers “no, change” when
asked if it is correct that the destination is Karup. Other examples
are shown in Figures 8 and 9. In 7 of the 10 cases, only the part of
the user’s response which answered the system’s question was
understood. In the remaining 3 cases the entire user response was
misunderstood. What this error type suggests is that (i) users
naturally store information in “packages” consisting of several
pieces of information. This means that they are unlikely to
consistently split these packages into single pieces of information
despite having been told to do so in the system’s introduction
(Figure 1). Dialogue designers should be aware of the existence of
such natural information packages and enable their system to
understand them. (ii) Users have stereotypical linguistic response
patterns, such as prefixing a ‘change’ keyword with a ‘no’.
Dialogue designers should be aware of these natural stereotypes
and enable the system to understand them. This problem appears
solvable by today’s technology. Our SLDS is already able to
accept such stereotypes in several cases, such as when information
on departure and arrival airports is being provided in the same
utterance. However, due to the present, strong limitations on active
vocabulary we have not been able to allow natural information
packages and stereotypes throughout the reservation dialogue.
 The second sub-type, E6b, illustrates a phenomenon which no
feat of dialogue design is likely to remove, i.e. the naturally
occurring slips-of-the-tongue in spontaneous speech. Slips do not
appear to constitute any major problem, however. Only one slip
causing an interaction problem occurred in the entire corpus: when
asked for the customer number, the user said “four, no sorry,
change, change”. Only the number was recognised forcing the user
to change it in the following utterance.

E7. Thinking aloud
E7 illustrates another phenomenon which no dialogue design effort
is likely to remove, i.e. the naturally occurring thinking-aloud in
spontaneous speech. Thinking-aloud does not appear to constitute a
major problem, however. Only one case of natural thinking-aloud
occurred in the entire corpus: when asked for the hour of departure,
the user said “well, let me see, at 8:30 at the latest”.

E8. Non-cooperativity
E8 illustrates yet another phenomenon which cannot be removed
through dialogue design, i.e. the deliberately non-cooperative user.
Only one case of deliberate user non-cooperativity was detected in
the test corpus. The user replied “the ticket should not be sent” to
the system’s question of whether the ticket should be sent or would
be picked up in the airport. This reply would not have been
considered non-cooperative if produced in human-human
conversation. However, the reply is unnecessarily complex and
cannot be handled by our SLDS. We know that the particular user
who caused the problem was deliberately testing the hypothesis
that the system would be unable to handle the input because she
said so in the telephone interview following her interaction with
the system. SLDSs designers have no way of designing dialogues
with sufficient robustness to withstand deliberately non-
cooperative users. Nor should SLDSs designers attempt to do so,
apart, of course, from ensuring that the system will not break down
and that deliberately non-cooperative users cannot cause any harm.
The simple fact is that deliberately non-cooperative users, when
successful, will fail to get their task done.

5. CONCLUSION
The E1 errors are of only minor importance as they will disappear
when the system is being used in real life. Furthermore, E1 errors
cause no real dialogue interaction problems. Similarly, E8 errors
are of minor importance because users will stop experimenting
with the system when they want the task done. E6b and E7 can
hardly be prevented but, at least according to our test material, they
are infrequent and do not cause severe problems of interaction.
 E2 and E3a seem to have a much larger effect on dialogue
transaction success. Although they can hardly be completely
avoided, it is likely that their number can be reduced by clearly
making users aware of the importance of paying attention to
system feedback and system questions. Real-life users are likely to
be more attentive.
 E3b, E4, E5 and E6a are the most challenging user error types.
They would all be perfectly acceptable in human-human dialogue.
However, because of the limited dialogue capabilities of our SLDS,
it is clearly stated in the system’s introduction how users should
interact with it in order to prevent these errors. Whereas E3b is less
clear (Section 4 above), the E4, E5 and E6a errors all violate the
system’s explicit instructions. The important question is why so
many users violate exactly these instructions. A likely explanation
is that, at least for many users, it is not cognitively feasible to
follow the system’s explicit instructions. In an extreme example:
had we asked users to always use exactly four words in their
responses to the system’s questions, this would clearly have been
cognitively infeasible. Similarly, several of the things which the
system’s introduction asks users to do or avoid doing turn out to be
unrealistic given the dialogue behaviour that is natural to most
people. This reveals a fundamental shortcoming in our initial
concept of user errors (Section 4). It is not sufficient to provide
clear and explicit instructions to users on how to interact with the
system. It must also be possible for users, such as they are, to
follow these instructions in practice. The conclusion is that E3b,
E4, E5 and E6a are not user errors at all but rather constitute more
or less difficult problems of dialogue design.
 E3b, E4, E5 and E6a are otherwise very different. E3b and E5
result from a mismatch between generic task type (ordering) and
the type of dialogue initiative adopted for the application (system-
directed domain communication). E4 and E6a belong to a much
more general class of human-machine interaction problems. For
years, in fact, experts on human error in the field of human factors
have been aware of the broad category of errors illustrated by E4
and E6a. The reason why they are easy to overlook during design
and until the user and field test data come in, is that, in principle,
we can all avoid them. For instance, we can all easily say ‘change’
when we want to correct a system misunderstanding. During actual
task performance, however, whether the task be one of driving a
car or communicating with an SLDS, we tend to fall back on our
natural skills and the human cognitive processing architecture,
more or less ignoring rules or instructions that conflict with those
skills and that architecture.
 What are the implications of the findings reported in this paper?
We emphatically do not want to argue that, because of problems
such as E3b, E4, E5 and E6a, SLDSs of the same general type as
ours cannot be used in realistic applications. None of these
problems caused transaction failure. The E6a problems can be
removed using current dialogue design techniques (Section 4). The
E3b and E5 problems were few. And the E4 problems, of which

there were many, might at least be reduced in number through a
larger active vocabulary.

ACKNOWLEDGEMENTS
The Danish dialogue system was developed in collaboration
between the Center for PersonKommunikation at Aalborg
University (speech recognition, grammar), the Centre for Language
Technology, Copenhagen (grammar, parsing), and the Centre for
Cognitive Science, Roskilde University (dialogue and application
design and implementation, human-machine aspects). The project
was supported by the Danish Research Councils for the Technical
and the Natural Sciences. We gratefully acknowledge the support.

REFERENCES
[1] H. Aust, and M. Oerder, Dialogue Control in Automatic Inquiry

Systems, Proceedings of the ESCA Workshop on Spoken Dialogue
Systems, Vigsø, 121-124, 1995.

[2] N.O. Bernsen, H. Dybkjær and L. Dybkjær, Exploring the Limits of
System-directed Dialogue. Dialogue Evaluation of the Danish
Dialogue System, Proceedings of Eurospeech ‘95, Madrid, 1457-60,
1995.

[3] R. Cole, D.G. Novick, M. Fanty, P. Vermeulen, S. Sutton, D. Burnett
and J. Schalkwyk, A Prototype Voice-Response Questionnaire for the
US Census, Proceedings of the ICSLP ‘94, Yokohama, 683-686,
1994.

[4] H. Dybkjær, N.O. Bernsen and L. Dybkjær, Wizard-of-Oz and the
Trade-off between Naturalness and Recogniser Constraints.
Proceedings of Eurospeech ‘93, Berlin,. 947-50, 1993.

[5] L. Dybkjær, N.O. Bernsen and H. Dybkjær, Evaluation of Spoken
Dialogues. User Test with a Simulated Speech Recogniser. Report 9b
from the Danish Project in Spoken Language Dialogue Systems.
Roskilde University, February 1996. 3 volumes of 18 pages, 265
pages, and 109 pages, respectively.

[6] L. Dybkjær, N.O. Bernsen and H. Dybkjær, Reducing Miscom-
munication in Spoken Human-Machine Dialogue. Proceedings of
AAAI ‘‘96 Workshop on detecting repairing and preventing human-
machine miscommunication, Portland, 1996.

[7] W. Eckert, E. Nöth, H. Niemann and E. Schukat-Talamazzini, Real
Users Behave Weird - Experiences Made Collecting Large Human-
Machine-Dialog Corpora, Proceedings of the ESCA Workshop on
Spoken Dialogue Systems, Vigsø, 193-196, 1995.

[8] N.M. Fraser and G.N. Gilbert, Simulating Speech Systems, Computer
Speech and Language 5, 81-99, 1991.

